Branch data Line data Source code
1 : : /* Functions to support general ended bitmaps.
2 : : Copyright (C) 1997-2025 Free Software Foundation, Inc.
3 : :
4 : : This file is part of GCC.
5 : :
6 : : GCC is free software; you can redistribute it and/or modify it under
7 : : the terms of the GNU General Public License as published by the Free
8 : : Software Foundation; either version 3, or (at your option) any later
9 : : version.
10 : :
11 : : GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 : : WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 : : FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 : : for more details.
15 : :
16 : : You should have received a copy of the GNU General Public License
17 : : along with GCC; see the file COPYING3. If not see
18 : : <http://www.gnu.org/licenses/>. */
19 : :
20 : : #ifndef GCC_BITMAP_H
21 : : #define GCC_BITMAP_H
22 : :
23 : : /* Implementation of sparse integer sets as a linked list or tree.
24 : :
25 : : This sparse set representation is suitable for sparse sets with an
26 : : unknown (a priori) universe.
27 : :
28 : : Sets are represented as double-linked lists of container nodes of
29 : : type "struct bitmap_element" or as a binary trees of the same
30 : : container nodes. Each container node consists of an index for the
31 : : first member that could be held in the container, a small array of
32 : : integers that represent the members in the container, and pointers
33 : : to the next and previous element in the linked list, or left and
34 : : right children in the tree. In linked-list form, the container
35 : : nodes in the list are sorted in ascending order, i.e. the head of
36 : : the list holds the element with the smallest member of the set.
37 : : In tree form, nodes to the left have a smaller container index.
38 : :
39 : : For a given member I in the set:
40 : : - the element for I will have index is I / (bits per element)
41 : : - the position for I within element is I % (bits per element)
42 : :
43 : : This representation is very space-efficient for large sparse sets, and
44 : : the size of the set can be changed dynamically without much overhead.
45 : : An important parameter is the number of bits per element. In this
46 : : implementation, there are 128 bits per element. This results in a
47 : : high storage overhead *per element*, but a small overall overhead if
48 : : the set is very sparse.
49 : :
50 : : The storage requirements for linked-list sparse sets are O(E), with E->N
51 : : in the worst case (a sparse set with large distances between the values
52 : : of the set members).
53 : :
54 : : This representation also works well for data flow problems where the size
55 : : of the set may grow dynamically, but care must be taken that the member_p,
56 : : add_member, and remove_member operations occur with a suitable access
57 : : pattern.
58 : :
59 : : The linked-list set representation works well for problems involving very
60 : : sparse sets. The canonical example in GCC is, of course, the "set of
61 : : sets" for some CFG-based data flow problems (liveness analysis, dominance
62 : : frontiers, etc.).
63 : :
64 : : For random-access sparse sets of unknown universe, the binary tree
65 : : representation is likely to be a more suitable choice. Theoretical
66 : : access times for the binary tree representation are better than those
67 : : for the linked-list, but in practice this is only true for truely
68 : : random access.
69 : :
70 : : Often the most suitable representation during construction of the set
71 : : is not the best choice for the usage of the set. For such cases, the
72 : : "view" of the set can be changed from one representation to the other.
73 : : This is an O(E) operation:
74 : :
75 : : * from list to tree view : bitmap_tree_view
76 : : * from tree to list view : bitmap_list_view
77 : :
78 : : Traversing linked lists or trees can be cache-unfriendly. Performance
79 : : can be improved by keeping container nodes in the set grouped together
80 : : in memory, using a dedicated obstack for a set (or group of related
81 : : sets). Elements allocated on obstacks are released to a free-list and
82 : : taken off the free list. If multiple sets are allocated on the same
83 : : obstack, elements freed from one set may be re-used for one of the other
84 : : sets. This usually helps avoid cache misses.
85 : :
86 : : A single free-list is used for all sets allocated in GGC space. This is
87 : : bad for persistent sets, so persistent sets should be allocated on an
88 : : obstack whenever possible.
89 : :
90 : : For random-access sets with a known, relatively small universe size, the
91 : : SparseSet or simple bitmap representations may be more efficient than a
92 : : linked-list set.
93 : :
94 : :
95 : : LINKED LIST FORM
96 : : ================
97 : :
98 : : In linked-list form, in-order iterations of the set can be executed
99 : : efficiently. The downside is that many random-access operations are
100 : : relatively slow, because the linked list has to be traversed to test
101 : : membership (i.e. member_p/ add_member/remove_member).
102 : :
103 : : To improve the performance of this set representation, the last
104 : : accessed element and its index are cached. For membership tests on
105 : : members close to recently accessed members, the cached last element
106 : : improves membership test to a constant-time operation.
107 : :
108 : : The following operations can always be performed in O(1) time in
109 : : list view:
110 : :
111 : : * clear : bitmap_clear
112 : : * smallest_member : bitmap_first_set_bit
113 : : * pop_smallest : bitmap_clear_first_set_bit
114 : : * choose_one : (not implemented, but could be
115 : : in constant time)
116 : :
117 : : The following operations can be performed in O(E) time worst-case in
118 : : list view (with E the number of elements in the linked list), but in
119 : : O(1) time with a suitable access patterns:
120 : :
121 : : * member_p : bitmap_bit_p
122 : : * add_member : bitmap_set_bit / bitmap_set_range
123 : : * remove_member : bitmap_clear_bit / bitmap_clear_range
124 : :
125 : : The following operations can be performed in O(E) time in list view:
126 : :
127 : : * cardinality : bitmap_count_bits
128 : : * largest_member : bitmap_last_set_bit (but this could
129 : : in constant time with a pointer to
130 : : the last element in the chain)
131 : : * set_size : bitmap_last_set_bit
132 : :
133 : : In tree view the following operations can all be performed in O(log E)
134 : : amortized time with O(E) worst-case behavior.
135 : :
136 : : * smallest_member
137 : : * pop_smallest
138 : : * largest_member
139 : : * set_size
140 : : * member_p
141 : : * add_member
142 : : * remove_member
143 : :
144 : : Additionally, the linked-list sparse set representation supports
145 : : enumeration of the members in O(E) time:
146 : :
147 : : * forall : EXECUTE_IF_SET_IN_BITMAP
148 : : * set_copy : bitmap_copy
149 : : * set_intersection : bitmap_intersect_p /
150 : : bitmap_and / bitmap_and_into /
151 : : EXECUTE_IF_AND_IN_BITMAP
152 : : * set_union : bitmap_ior / bitmap_ior_into
153 : : * set_difference : bitmap_intersect_compl_p /
154 : : bitmap_and_comp / bitmap_and_comp_into /
155 : : EXECUTE_IF_AND_COMPL_IN_BITMAP
156 : : * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
157 : : * set_compare : bitmap_equal_p
158 : :
159 : : Some operations on 3 sets that occur frequently in data flow problems
160 : : are also implemented:
161 : :
162 : : * A | (B & C) : bitmap_ior_and_into
163 : : * A | (B & ~C) : bitmap_ior_and_compl /
164 : : bitmap_ior_and_compl_into
165 : :
166 : :
167 : : BINARY TREE FORM
168 : : ================
169 : : An alternate "view" of a bitmap is its binary tree representation.
170 : : For this representation, splay trees are used because they can be
171 : : implemented using the same data structures as the linked list, with
172 : : no overhead for meta-data (like color, or rank) on the tree nodes.
173 : :
174 : : In binary tree form, random-access to the set is much more efficient
175 : : than for the linked-list representation. Downsides are the high cost
176 : : of clearing the set, and the relatively large number of operations
177 : : necessary to balance the tree. Also, iterating the set members is
178 : : not supported.
179 : :
180 : : As for the linked-list representation, the last accessed element and
181 : : its index are cached, so that membership tests on the latest accessed
182 : : members is a constant-time operation. Other lookups take O(logE)
183 : : time amortized (but O(E) time worst-case).
184 : :
185 : : The following operations can always be performed in O(1) time:
186 : :
187 : : * choose_one : (not implemented, but could be
188 : : implemented in constant time)
189 : :
190 : : The following operations can be performed in O(logE) time amortized
191 : : but O(E) time worst-case, but in O(1) time if the same element is
192 : : accessed.
193 : :
194 : : * member_p : bitmap_bit_p
195 : : * add_member : bitmap_set_bit
196 : : * remove_member : bitmap_clear_bit
197 : :
198 : : The following operations can be performed in O(logE) time amortized
199 : : but O(E) time worst-case:
200 : :
201 : : * smallest_member : bitmap_first_set_bit
202 : : * largest_member : bitmap_last_set_bit
203 : : * set_size : bitmap_last_set_bit
204 : :
205 : : The following operations can be performed in O(E) time:
206 : :
207 : : * clear : bitmap_clear
208 : :
209 : : The binary tree sparse set representation does *not* support any form
210 : : of enumeration, and does also *not* support logical operations on sets.
211 : : The binary tree representation is only supposed to be used for sets
212 : : on which many random-access membership tests will happen. */
213 : :
214 : : #include "obstack.h"
215 : : #include "array-traits.h"
216 : :
217 : : /* Bitmap memory usage. */
218 : : class bitmap_usage: public mem_usage
219 : : {
220 : : public:
221 : : /* Default contructor. */
222 : 0 : bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
223 : : /* Constructor. */
224 : : bitmap_usage (size_t allocated, size_t times, size_t peak,
225 : : uint64_t nsearches, uint64_t search_iter)
226 : : : mem_usage (allocated, times, peak),
227 : : m_nsearches (nsearches), m_search_iter (search_iter) {}
228 : :
229 : : /* Sum the usage with SECOND usage. */
230 : : bitmap_usage
231 : : operator+ (const bitmap_usage &second)
232 : : {
233 : : return bitmap_usage (m_allocated + second.m_allocated,
234 : : m_times + second.m_times,
235 : : m_peak + second.m_peak,
236 : : m_nsearches + second.m_nsearches,
237 : : m_search_iter + second.m_search_iter);
238 : : }
239 : :
240 : : /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
241 : : inline void
242 : : dump (mem_location *loc, const mem_usage &total) const
243 : : {
244 : : char *location_string = loc->to_string ();
245 : :
246 : : fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
247 : : PRsa (9) PRsa (9) ":%5.1f%%"
248 : : PRsa (11) PRsa (11) "%10s\n",
249 : : location_string, SIZE_AMOUNT (m_allocated),
250 : : get_percent (m_allocated, total.m_allocated),
251 : : SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
252 : : get_percent (m_times, total.m_times),
253 : : SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
254 : : loc->m_ggc ? "ggc" : "heap");
255 : :
256 : : free (location_string);
257 : : }
258 : :
259 : : /* Dump header with NAME. */
260 : : static inline void
261 : : dump_header (const char *name)
262 : : {
263 : : fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
264 : : "Times", "N searches", "Search iter", "Type");
265 : : }
266 : :
267 : : /* Number search operations. */
268 : : uint64_t m_nsearches;
269 : : /* Number of search iterations. */
270 : : uint64_t m_search_iter;
271 : : };
272 : :
273 : : /* Bitmap memory description. */
274 : : extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
275 : :
276 : : /* Fundamental storage type for bitmap. */
277 : :
278 : : typedef unsigned long BITMAP_WORD;
279 : : /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
280 : : it is used in preprocessor directives -- hence the 1u. */
281 : : #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
282 : :
283 : : /* Number of words to use for each element in the linked list. */
284 : :
285 : : #ifndef BITMAP_ELEMENT_WORDS
286 : : #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
287 : : #endif
288 : :
289 : : /* Number of bits in each actual element of a bitmap. */
290 : :
291 : : #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
292 : :
293 : : /* Obstack for allocating bitmaps and elements from. */
294 : : struct bitmap_obstack {
295 : : struct bitmap_element *elements;
296 : : bitmap_head *heads;
297 : : struct obstack obstack;
298 : : };
299 : :
300 : : /* Bitmap set element. We use a linked list to hold only the bits that
301 : : are set. This allows for use to grow the bitset dynamically without
302 : : having to realloc and copy a giant bit array.
303 : :
304 : : The free list is implemented as a list of lists. There is one
305 : : outer list connected together by prev fields. Each element of that
306 : : outer is an inner list (that may consist only of the outer list
307 : : element) that are connected by the next fields. The prev pointer
308 : : is undefined for interior elements. This allows
309 : : bitmap_elt_clear_from to be implemented in unit time rather than
310 : : linear in the number of elements to be freed. */
311 : :
312 : : struct GTY((chain_next ("%h.next"))) bitmap_element {
313 : : /* In list form, the next element in the linked list;
314 : : in tree form, the left child node in the tree. */
315 : : struct bitmap_element *next;
316 : : /* In list form, the previous element in the linked list;
317 : : in tree form, the right child node in the tree. */
318 : : struct bitmap_element *prev;
319 : : /* regno/BITMAP_ELEMENT_ALL_BITS. */
320 : : unsigned int indx;
321 : : /* Bits that are set, counting from INDX, inclusive */
322 : : BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
323 : : };
324 : :
325 : : /* Head of bitmap linked list. The 'current' member points to something
326 : : already pointed to by the chain started by first, so GTY((skip)) it. */
327 : :
328 : : class GTY(()) bitmap_head {
329 : : public:
330 : : static bitmap_obstack crashme;
331 : : /* Poison obstack to not make it not a valid initialized GC bitmap. */
332 : 1298922507 : CONSTEXPR bitmap_head()
333 : 1298922507 : : indx (0), tree_form (false), padding (0), alloc_descriptor (0), first (NULL),
334 : 1223448833 : current (NULL), obstack (&crashme)
335 : : {}
336 : : /* Index of last element looked at. */
337 : : unsigned int indx;
338 : : /* False if the bitmap is in list form; true if the bitmap is in tree form.
339 : : Bitmap iterators only work on bitmaps in list form. */
340 : : unsigned tree_form: 1;
341 : : /* Next integer is shifted, so padding is needed. */
342 : : unsigned padding: 2;
343 : : /* Bitmap UID used for memory allocation statistics. */
344 : : unsigned alloc_descriptor: 29;
345 : : /* In list form, the first element in the linked list;
346 : : in tree form, the root of the tree. */
347 : : bitmap_element *first;
348 : : /* Last element looked at. */
349 : : bitmap_element * GTY((skip(""))) current;
350 : : /* Obstack to allocate elements from. If NULL, then use GGC allocation. */
351 : : bitmap_obstack * GTY((skip(""))) obstack;
352 : :
353 : : /* Dump bitmap. */
354 : : void dump ();
355 : :
356 : : /* Get bitmap descriptor UID casted to an unsigned integer pointer.
357 : : Shift the descriptor because pointer_hash<Type>::hash is
358 : : doing >> 3 shift operation. */
359 : 0 : unsigned *get_descriptor ()
360 : : {
361 : 0 : return (unsigned *)(ptrdiff_t)(alloc_descriptor << 3);
362 : : }
363 : : };
364 : :
365 : : /* Global data */
366 : : extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
367 : : extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
368 : :
369 : : /* Change the view of the bitmap to list, or tree. */
370 : : void bitmap_list_view (bitmap);
371 : : void bitmap_tree_view (bitmap);
372 : :
373 : : /* Clear a bitmap by freeing up the linked list. */
374 : : extern void bitmap_clear (bitmap);
375 : :
376 : : /* Copy a bitmap to another bitmap. */
377 : : extern void bitmap_copy (bitmap, const_bitmap);
378 : :
379 : : /* Move a bitmap to another bitmap. */
380 : : extern void bitmap_move (bitmap, bitmap);
381 : :
382 : : /* True if two bitmaps are identical. */
383 : : extern bool bitmap_equal_p (const_bitmap, const_bitmap);
384 : :
385 : : /* True if the bitmaps intersect (their AND is non-empty). */
386 : : extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
387 : :
388 : : /* True if the complement of the second intersects the first (their
389 : : AND_COMPL is non-empty). */
390 : : extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
391 : :
392 : : /* True if MAP is an empty bitmap. */
393 : 2296920976 : inline bool bitmap_empty_p (const_bitmap map)
394 : : {
395 : 2231081090 : return !map->first;
396 : : }
397 : :
398 : : /* True if the bitmap has only a single bit set. */
399 : : extern bool bitmap_single_bit_set_p (const_bitmap);
400 : :
401 : : /* Count the number of bits set in the bitmap. */
402 : : extern unsigned long bitmap_count_bits (const_bitmap);
403 : :
404 : : /* Count the number of unique bits set across the two bitmaps. */
405 : : extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
406 : :
407 : : /* Boolean operations on bitmaps. The _into variants are two operand
408 : : versions that modify the first source operand. The other variants
409 : : are three operand versions that to not destroy the source bitmaps.
410 : : The operations supported are &, & ~, |, ^. */
411 : : extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
412 : : extern bool bitmap_and_into (bitmap, const_bitmap);
413 : : extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
414 : : extern bool bitmap_and_compl_into (bitmap, const_bitmap);
415 : : #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
416 : : extern void bitmap_compl_and_into (bitmap, const_bitmap);
417 : : extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
418 : : extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
419 : : extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
420 : : extern bool bitmap_ior_into (bitmap, const_bitmap);
421 : : extern bool bitmap_ior_into_and_free (bitmap, bitmap *);
422 : : extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
423 : : extern void bitmap_xor_into (bitmap, const_bitmap);
424 : :
425 : : /* DST = A | (B & C). Return true if DST changes. */
426 : : extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
427 : : /* DST = A | (B & ~C). Return true if DST changes. */
428 : : extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
429 : : const_bitmap B, const_bitmap C);
430 : : /* A |= (B & ~C). Return true if A changes. */
431 : : extern bool bitmap_ior_and_compl_into (bitmap A,
432 : : const_bitmap B, const_bitmap C);
433 : :
434 : : /* Clear a single bit in a bitmap. Return true if the bit changed. */
435 : : extern bool bitmap_clear_bit (bitmap, int);
436 : :
437 : : /* Set a single bit in a bitmap. Return true if the bit changed. */
438 : : extern bool bitmap_set_bit (bitmap, int);
439 : :
440 : : /* Return true if a bit is set in a bitmap. */
441 : : extern bool bitmap_bit_p (const_bitmap, int);
442 : :
443 : : /* Set and get multiple bit values in a sparse bitmap. This allows a bitmap to
444 : : function as a sparse array of bit patterns where the patterns are
445 : : multiples of power of 2. This is more efficient than performing this as
446 : : multiple individual operations. */
447 : : void bitmap_set_aligned_chunk (bitmap, unsigned int, unsigned int, BITMAP_WORD);
448 : : BITMAP_WORD bitmap_get_aligned_chunk (const_bitmap, unsigned int, unsigned int);
449 : :
450 : : /* Debug functions to print a bitmap. */
451 : : extern void debug_bitmap (const_bitmap);
452 : : extern void debug_bitmap_file (FILE *, const_bitmap);
453 : :
454 : : /* Print a bitmap. */
455 : : extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
456 : :
457 : : /* Initialize and release a bitmap obstack. */
458 : : extern void bitmap_obstack_initialize (bitmap_obstack *);
459 : : extern void bitmap_obstack_release (bitmap_obstack *);
460 : : extern void bitmap_register (bitmap MEM_STAT_DECL);
461 : : extern void dump_bitmap_statistics (void);
462 : :
463 : : /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
464 : : to allocate from, NULL for GC'd bitmap. */
465 : :
466 : : inline void
467 : 5752830660 : bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
468 : : {
469 : 5752830660 : head->first = head->current = NULL;
470 : 5752830660 : head->indx = head->tree_form = 0;
471 : 5752830660 : head->padding = 0;
472 : 5752830660 : head->alloc_descriptor = 0;
473 : 5752830660 : head->obstack = obstack;
474 : 5311323898 : if (GATHER_STATISTICS)
475 : : bitmap_register (head PASS_MEM_STAT);
476 : 126854629 : }
477 : :
478 : : /* Release a bitmap (but not its head). This is suitable for pairing with
479 : : bitmap_initialize. */
480 : :
481 : : inline void
482 : 172790961 : bitmap_release (bitmap head)
483 : : {
484 : 159242771 : bitmap_clear (head);
485 : : /* Poison the obstack pointer so the obstack can be safely released.
486 : : Do not zero it as the bitmap then becomes initialized GC. */
487 : 159242771 : head->obstack = &bitmap_head::crashme;
488 : : }
489 : :
490 : : /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
491 : : extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
492 : : #define BITMAP_ALLOC bitmap_alloc
493 : : extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
494 : : #define BITMAP_GGC_ALLOC bitmap_gc_alloc
495 : : extern void bitmap_obstack_free (bitmap);
496 : :
497 : : /* A few compatibility/functions macros for compatibility with sbitmaps */
498 : 940 : inline void dump_bitmap (FILE *file, const_bitmap map)
499 : : {
500 : 940 : bitmap_print (file, map, "", "\n");
501 : 300 : }
502 : : extern void debug (const bitmap_head &ref);
503 : : extern void debug (const bitmap_head *ptr);
504 : :
505 : : extern unsigned bitmap_first_set_bit (const_bitmap);
506 : : extern unsigned bitmap_clear_first_set_bit (bitmap);
507 : : extern unsigned bitmap_last_set_bit (const_bitmap);
508 : :
509 : : /* Compute bitmap hash (for purposes of hashing etc.) */
510 : : extern hashval_t bitmap_hash (const_bitmap);
511 : :
512 : : /* Do any cleanup needed on a bitmap when it is no longer used. */
513 : : #define BITMAP_FREE(BITMAP) \
514 : : ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
515 : :
516 : : /* Iterator for bitmaps. */
517 : :
518 : : struct bitmap_iterator
519 : : {
520 : : /* Pointer to the current bitmap element. */
521 : : bitmap_element *elt1;
522 : :
523 : : /* Pointer to 2nd bitmap element when two are involved. */
524 : : bitmap_element *elt2;
525 : :
526 : : /* Word within the current element. */
527 : : unsigned word_no;
528 : :
529 : : /* Contents of the actually processed word. When finding next bit
530 : : it is shifted right, so that the actual bit is always the least
531 : : significant bit of ACTUAL. */
532 : : BITMAP_WORD bits;
533 : : };
534 : :
535 : : /* Initialize a single bitmap iterator. START_BIT is the first bit to
536 : : iterate from. */
537 : :
538 : : inline void
539 : 4485649141 : bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
540 : : unsigned start_bit, unsigned *bit_no)
541 : : {
542 : 4485649141 : bi->elt1 = map->first;
543 : 4485649141 : bi->elt2 = NULL;
544 : :
545 : 4485649141 : gcc_checking_assert (!map->tree_form);
546 : :
547 : : /* Advance elt1 until it is not before the block containing start_bit. */
548 : 5844154087 : while (1)
549 : : {
550 : 5164901614 : if (!bi->elt1)
551 : : {
552 : 1030346624 : bi->elt1 = &bitmap_zero_bits;
553 : 1030346624 : break;
554 : : }
555 : :
556 : 4134554990 : if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
557 : : break;
558 : 679252473 : bi->elt1 = bi->elt1->next;
559 : : }
560 : :
561 : : /* We might have gone past the start bit, so reinitialize it. */
562 : 4485649141 : if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
563 : 575833278 : start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
564 : :
565 : : /* Initialize for what is now start_bit. */
566 : 4485649141 : bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
567 : 4485649141 : bi->bits = bi->elt1->bits[bi->word_no];
568 : 4485649141 : bi->bits >>= start_bit % BITMAP_WORD_BITS;
569 : :
570 : : /* If this word is zero, we must make sure we're not pointing at the
571 : : first bit, otherwise our incrementing to the next word boundary
572 : : will fail. It won't matter if this increment moves us into the
573 : : next word. */
574 : 4485649141 : start_bit += !bi->bits;
575 : :
576 : 4485649141 : *bit_no = start_bit;
577 : 4485649141 : }
578 : :
579 : : /* Initialize an iterator to iterate over the intersection of two
580 : : bitmaps. START_BIT is the bit to commence from. */
581 : :
582 : : inline void
583 : 119187297 : bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
584 : : unsigned start_bit, unsigned *bit_no)
585 : : {
586 : 119187297 : bi->elt1 = map1->first;
587 : 119187297 : bi->elt2 = map2->first;
588 : :
589 : 119187297 : gcc_checking_assert (!map1->tree_form && !map2->tree_form);
590 : :
591 : : /* Advance elt1 until it is not before the block containing
592 : : start_bit. */
593 : 119187297 : while (1)
594 : : {
595 : 119187297 : if (!bi->elt1)
596 : : {
597 : 7543880 : bi->elt2 = NULL;
598 : 7543880 : break;
599 : : }
600 : :
601 : 111643417 : if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
602 : : break;
603 : 0 : bi->elt1 = bi->elt1->next;
604 : : }
605 : :
606 : : /* Advance elt2 until it is not before elt1. */
607 : 225599251 : while (1)
608 : : {
609 : 172393274 : if (!bi->elt2)
610 : : {
611 : 29274047 : bi->elt1 = bi->elt2 = &bitmap_zero_bits;
612 : 29274047 : break;
613 : : }
614 : :
615 : 143119227 : if (bi->elt2->indx >= bi->elt1->indx)
616 : : break;
617 : 53205977 : bi->elt2 = bi->elt2->next;
618 : : }
619 : :
620 : : /* If we're at the same index, then we have some intersecting bits. */
621 : 119187297 : if (bi->elt1->indx == bi->elt2->indx)
622 : : {
623 : : /* We might have advanced beyond the start_bit, so reinitialize
624 : : for that. */
625 : 112834754 : if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
626 : 17161018 : start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
627 : :
628 : 112834754 : bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
629 : 112834754 : bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
630 : 112834754 : bi->bits >>= start_bit % BITMAP_WORD_BITS;
631 : : }
632 : : else
633 : : {
634 : : /* Otherwise we must immediately advance elt1, so initialize for
635 : : that. */
636 : 6352543 : bi->word_no = BITMAP_ELEMENT_WORDS - 1;
637 : 6352543 : bi->bits = 0;
638 : : }
639 : :
640 : : /* If this word is zero, we must make sure we're not pointing at the
641 : : first bit, otherwise our incrementing to the next word boundary
642 : : will fail. It won't matter if this increment moves us into the
643 : : next word. */
644 : 119187297 : start_bit += !bi->bits;
645 : :
646 : 119187297 : *bit_no = start_bit;
647 : 119187297 : }
648 : :
649 : : /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2. */
650 : :
651 : : inline void
652 : 5205104 : bmp_iter_and_compl_init (bitmap_iterator *bi,
653 : : const_bitmap map1, const_bitmap map2,
654 : : unsigned start_bit, unsigned *bit_no)
655 : : {
656 : 5205104 : bi->elt1 = map1->first;
657 : 5205104 : bi->elt2 = map2->first;
658 : :
659 : 5205104 : gcc_checking_assert (!map1->tree_form && !map2->tree_form);
660 : :
661 : : /* Advance elt1 until it is not before the block containing start_bit. */
662 : 5205104 : while (1)
663 : : {
664 : 5205104 : if (!bi->elt1)
665 : : {
666 : 606411 : bi->elt1 = &bitmap_zero_bits;
667 : 606411 : break;
668 : : }
669 : :
670 : 4598693 : if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
671 : : break;
672 : 0 : bi->elt1 = bi->elt1->next;
673 : : }
674 : :
675 : : /* Advance elt2 until it is not before elt1. */
676 : 5205105 : while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
677 : 1 : bi->elt2 = bi->elt2->next;
678 : :
679 : : /* We might have advanced beyond the start_bit, so reinitialize for
680 : : that. */
681 : 5205104 : if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
682 : 56642 : start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
683 : :
684 : 5205104 : bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
685 : 5205104 : bi->bits = bi->elt1->bits[bi->word_no];
686 : 5205104 : if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
687 : 3629983 : bi->bits &= ~bi->elt2->bits[bi->word_no];
688 : 5205104 : bi->bits >>= start_bit % BITMAP_WORD_BITS;
689 : :
690 : : /* If this word is zero, we must make sure we're not pointing at the
691 : : first bit, otherwise our incrementing to the next word boundary
692 : : will fail. It won't matter if this increment moves us into the
693 : : next word. */
694 : 5205104 : start_bit += !bi->bits;
695 : :
696 : 5205104 : *bit_no = start_bit;
697 : 5205104 : }
698 : :
699 : : /* Advance to the next bit in BI. We don't advance to the next
700 : : nonzero bit yet. */
701 : :
702 : : inline void
703 : 15787889318 : bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
704 : : {
705 : 15787889318 : bi->bits >>= 1;
706 : 15787889318 : *bit_no += 1;
707 : 15589256487 : }
708 : :
709 : : /* Advance to first set bit in BI. */
710 : :
711 : : inline void
712 : 16388645844 : bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
713 : : {
714 : : #if (GCC_VERSION >= 3004)
715 : 16388645844 : {
716 : 16388645844 : unsigned int n = __builtin_ctzl (bi->bits);
717 : 16388645844 : gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
718 : 16388645844 : bi->bits >>= n;
719 : 16388645844 : *bit_no += n;
720 : : }
721 : : #else
722 : : while (!(bi->bits & 1))
723 : : {
724 : : bi->bits >>= 1;
725 : : *bit_no += 1;
726 : : }
727 : : #endif
728 : : }
729 : :
730 : : /* Advance to the next nonzero bit of a single bitmap, we will have
731 : : already advanced past the just iterated bit. Return true if there
732 : : is a bit to iterate. */
733 : :
734 : : inline bool
735 : 20080634913 : bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
736 : : {
737 : : /* If our current word is nonzero, it contains the bit we want. */
738 : 20080634913 : if (bi->bits)
739 : : {
740 : 14358847396 : next_bit:
741 : 16192138193 : bmp_iter_next_bit (bi, bit_no);
742 : 16192138193 : return true;
743 : : }
744 : :
745 : : /* Round up to the word boundary. We might have just iterated past
746 : : the end of the last word, hence the -1. It is not possible for
747 : : bit_no to point at the beginning of the now last word. */
748 : 5721787517 : *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
749 : 5721787517 : / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
750 : 5721787517 : bi->word_no++;
751 : :
752 : 924046797 : while (1)
753 : : {
754 : : /* Find the next nonzero word in this elt. */
755 : 10494935457 : while (bi->word_no != BITMAP_ELEMENT_WORDS)
756 : : {
757 : 5682391940 : bi->bits = bi->elt1->bits[bi->word_no];
758 : 5682391940 : if (bi->bits)
759 : 1833290797 : goto next_bit;
760 : 3849101143 : *bit_no += BITMAP_WORD_BITS;
761 : 3849101143 : bi->word_no++;
762 : : }
763 : :
764 : : /* Make sure we didn't remove the element while iterating. */
765 : 4812543517 : gcc_checking_assert (bi->elt1->indx != -1U);
766 : :
767 : : /* Advance to the next element. */
768 : 4812543517 : bi->elt1 = bi->elt1->next;
769 : 4812543517 : if (!bi->elt1)
770 : : return false;
771 : 924046797 : *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
772 : 924046797 : bi->word_no = 0;
773 : : }
774 : : }
775 : :
776 : : /* Advance to the next nonzero bit of an intersecting pair of
777 : : bitmaps. We will have already advanced past the just iterated bit.
778 : : Return true if there is a bit to iterate. */
779 : :
780 : : inline bool
781 : 220170966 : bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
782 : : {
783 : : /* If our current word is nonzero, it contains the bit we want. */
784 : 220170966 : if (bi->bits)
785 : : {
786 : 69557342 : next_bit:
787 : 104581262 : bmp_iter_next_bit (bi, bit_no);
788 : 104581262 : return true;
789 : : }
790 : :
791 : : /* Round up to the word boundary. We might have just iterated past
792 : : the end of the last word, hence the -1. It is not possible for
793 : : bit_no to point at the beginning of the now last word. */
794 : 150613624 : *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
795 : 150613624 : / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
796 : 150613624 : bi->word_no++;
797 : :
798 : 30888306 : while (1)
799 : : {
800 : : /* Find the next nonzero word in this elt. */
801 : 316177773 : while (bi->word_no != BITMAP_ELEMENT_WORDS)
802 : : {
803 : 169699763 : bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
804 : 169699763 : if (bi->bits)
805 : 35023920 : goto next_bit;
806 : 134675843 : *bit_no += BITMAP_WORD_BITS;
807 : 134675843 : bi->word_no++;
808 : : }
809 : :
810 : : /* Advance to the next identical element. */
811 : 150105028 : do
812 : : {
813 : : /* Make sure we didn't remove the element while iterating. */
814 : 150105028 : gcc_checking_assert (bi->elt1->indx != -1U);
815 : :
816 : : /* Advance elt1 while it is less than elt2. We always want
817 : : to advance one elt. */
818 : 152191876 : do
819 : : {
820 : 152191876 : bi->elt1 = bi->elt1->next;
821 : 152191876 : if (!bi->elt1)
822 : : return false;
823 : : }
824 : 50651724 : while (bi->elt1->indx < bi->elt2->indx);
825 : :
826 : : /* Make sure we didn't remove the element while iterating. */
827 : 48564876 : gcc_checking_assert (bi->elt2->indx != -1U);
828 : :
829 : : /* Advance elt2 to be no less than elt1. This might not
830 : : advance. */
831 : 126117478 : while (bi->elt2->indx < bi->elt1->indx)
832 : : {
833 : 91602154 : bi->elt2 = bi->elt2->next;
834 : 91602154 : if (!bi->elt2)
835 : : return false;
836 : : }
837 : : }
838 : 34515324 : while (bi->elt1->indx != bi->elt2->indx);
839 : :
840 : 30888306 : *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
841 : 30888306 : bi->word_no = 0;
842 : : }
843 : : }
844 : :
845 : : /* Advance to the next nonzero bit in the intersection of
846 : : complemented bitmaps. We will have already advanced past the just
847 : : iterated bit. */
848 : :
849 : : inline bool
850 : 97124981 : bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
851 : : {
852 : : /* If our current word is nonzero, it contains the bit we want. */
853 : 97124981 : if (bi->bits)
854 : : {
855 : 86871645 : next_bit:
856 : 91926389 : bmp_iter_next_bit (bi, bit_no);
857 : 91926389 : return true;
858 : : }
859 : :
860 : : /* Round up to the word boundary. We might have just iterated past
861 : : the end of the last word, hence the -1. It is not possible for
862 : : bit_no to point at the beginning of the now last word. */
863 : 10253336 : *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
864 : 10253336 : / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
865 : 10253336 : bi->word_no++;
866 : :
867 : 2550487 : while (1)
868 : : {
869 : : /* Find the next nonzero word in this elt. */
870 : 18048645 : while (bi->word_no != BITMAP_ELEMENT_WORDS)
871 : : {
872 : 10299566 : bi->bits = bi->elt1->bits[bi->word_no];
873 : 10299566 : if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
874 : 8388443 : bi->bits &= ~bi->elt2->bits[bi->word_no];
875 : 10299566 : if (bi->bits)
876 : 5054744 : goto next_bit;
877 : 5244822 : *bit_no += BITMAP_WORD_BITS;
878 : 5244822 : bi->word_no++;
879 : : }
880 : :
881 : : /* Make sure we didn't remove the element while iterating. */
882 : 7749079 : gcc_checking_assert (bi->elt1->indx != -1U);
883 : :
884 : : /* Advance to the next element of elt1. */
885 : 7749079 : bi->elt1 = bi->elt1->next;
886 : 7749079 : if (!bi->elt1)
887 : : return false;
888 : :
889 : : /* Make sure we didn't remove the element while iterating. */
890 : 2550487 : gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
891 : :
892 : : /* Advance elt2 until it is no less than elt1. */
893 : 5007075 : while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
894 : 2456588 : bi->elt2 = bi->elt2->next;
895 : :
896 : 2550487 : *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
897 : 2550487 : bi->word_no = 0;
898 : : }
899 : : }
900 : :
901 : : /* If you are modifying a bitmap you are currently iterating over you
902 : : have to ensure to
903 : : - never remove the current bit;
904 : : - if you set or clear a bit before the current bit this operation
905 : : will not affect the set of bits you are visiting during the iteration;
906 : : - if you set or clear a bit after the current bit it is unspecified
907 : : whether that affects the set of bits you are visiting during the
908 : : iteration.
909 : : If you want to remove the current bit you can delay this to the next
910 : : iteration (and after the iteration in case the last iteration is
911 : : affected). */
912 : :
913 : : /* Loop over all bits set in BITMAP, starting with MIN and setting
914 : : BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
915 : : should be treated as a read-only variable as it contains loop
916 : : state. */
917 : :
918 : : #ifndef EXECUTE_IF_SET_IN_BITMAP
919 : : /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
920 : : #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
921 : : for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
922 : : bmp_iter_set (&(ITER), &(BITNUM)); \
923 : : bmp_iter_next (&(ITER), &(BITNUM)))
924 : : #endif
925 : :
926 : : /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
927 : : and setting BITNUM to the bit number. ITER is a bitmap iterator.
928 : : BITNUM should be treated as a read-only variable as it contains
929 : : loop state. */
930 : :
931 : : #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
932 : : for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
933 : : &(BITNUM)); \
934 : : bmp_iter_and (&(ITER), &(BITNUM)); \
935 : : bmp_iter_next (&(ITER), &(BITNUM)))
936 : :
937 : : /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
938 : : and setting BITNUM to the bit number. ITER is a bitmap iterator.
939 : : BITNUM should be treated as a read-only variable as it contains
940 : : loop state. */
941 : :
942 : : #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
943 : : for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
944 : : &(BITNUM)); \
945 : : bmp_iter_and_compl (&(ITER), &(BITNUM)); \
946 : : bmp_iter_next (&(ITER), &(BITNUM)))
947 : :
948 : : /* A class that ties the lifetime of a bitmap to its scope. */
949 : : class auto_bitmap
950 : : {
951 : : public:
952 : 636019317 : auto_bitmap (ALONE_CXX_MEM_STAT_INFO)
953 : 630462260 : { bitmap_initialize (&m_bits, &bitmap_default_obstack PASS_MEM_STAT); }
954 : 172066267 : explicit auto_bitmap (bitmap_obstack *o CXX_MEM_STAT_INFO)
955 : 172066267 : { bitmap_initialize (&m_bits, o PASS_MEM_STAT); }
956 : 800967549 : ~auto_bitmap () { bitmap_clear (&m_bits); }
957 : : // Allow calling bitmap functions on our bitmap.
958 : 22301516970 : operator bitmap () { return &m_bits; }
959 : :
960 : : private:
961 : : // Prevent making a copy that references our bitmap.
962 : : auto_bitmap (const auto_bitmap &) = delete;
963 : : auto_bitmap &operator = (const auto_bitmap &) = delete;
964 : : auto_bitmap (auto_bitmap &&) = delete;
965 : : auto_bitmap &operator = (auto_bitmap &&) = delete;
966 : :
967 : : bitmap_head m_bits;
968 : : };
969 : :
970 : : extern void debug (const auto_bitmap &ref);
971 : : extern void debug (const auto_bitmap *ptr);
972 : :
973 : : /* Base class for bitmap_view; see there for details. */
974 : : template<typename T, typename Traits = array_traits<T> >
975 : : class base_bitmap_view
976 : : {
977 : : public:
978 : : typedef typename Traits::element_type array_element_type;
979 : :
980 : : base_bitmap_view (const T &, bitmap_element *);
981 : 139867922 : operator const_bitmap () const { return &m_head; }
982 : :
983 : : private:
984 : : base_bitmap_view (const base_bitmap_view &);
985 : :
986 : : bitmap_head m_head;
987 : : };
988 : :
989 : : /* Provides a read-only bitmap view of a single integer bitmask or a
990 : : constant-sized array of integer bitmasks, or of a wrapper around such
991 : : bitmasks. */
992 : : template<typename T, typename Traits>
993 : : class bitmap_view<T, Traits, true> : public base_bitmap_view<T, Traits>
994 : : {
995 : : public:
996 : 139867922 : bitmap_view (const T &array)
997 : 139867922 : : base_bitmap_view<T, Traits> (array, m_bitmap_elements) {}
998 : :
999 : : private:
1000 : : /* How many bitmap_elements we need to hold a full T. */
1001 : : static const size_t num_bitmap_elements
1002 : : = CEIL (CHAR_BIT
1003 : : * sizeof (typename Traits::element_type)
1004 : : * Traits::constant_size,
1005 : : BITMAP_ELEMENT_ALL_BITS);
1006 : : bitmap_element m_bitmap_elements[num_bitmap_elements];
1007 : : };
1008 : :
1009 : : /* Initialize the view for array ARRAY, using the array of bitmap
1010 : : elements in BITMAP_ELEMENTS (which is known to contain enough
1011 : : entries). */
1012 : : template<typename T, typename Traits>
1013 : 139867922 : base_bitmap_view<T, Traits>::base_bitmap_view (const T &array,
1014 : 139867922 : bitmap_element *bitmap_elements)
1015 : : {
1016 : 139867922 : m_head.obstack = NULL;
1017 : :
1018 : : /* The code currently assumes that each element of ARRAY corresponds
1019 : : to exactly one bitmap_element. */
1020 : 139867922 : const size_t array_element_bits = CHAR_BIT * sizeof (array_element_type);
1021 : : STATIC_ASSERT (BITMAP_ELEMENT_ALL_BITS % array_element_bits == 0);
1022 : 139867922 : size_t array_step = BITMAP_ELEMENT_ALL_BITS / array_element_bits;
1023 : 139867922 : size_t array_size = Traits::size (array);
1024 : :
1025 : : /* Process each potential bitmap_element in turn. The loop is written
1026 : : this way rather than per array element because usually there are
1027 : : only a small number of array elements per bitmap element (typically
1028 : : two or four). The inner loops should therefore unroll completely. */
1029 : 139867922 : const array_element_type *array_elements = Traits::base (array);
1030 : 139867922 : unsigned int indx = 0;
1031 : 139867922 : for (size_t array_base = 0;
1032 : 279735844 : array_base < array_size;
1033 : 139867922 : array_base += array_step, indx += 1)
1034 : : {
1035 : : /* How many array elements are in this particular bitmap_element. */
1036 : 139867922 : unsigned int array_count
1037 : : = (STATIC_CONSTANT_P (array_size % array_step == 0)
1038 : : ? array_step : MIN (array_step, array_size - array_base));
1039 : :
1040 : : /* See whether we need this bitmap element. */
1041 : 139867922 : array_element_type ior = array_elements[array_base];
1042 : 279735844 : for (size_t i = 1; i < array_count; ++i)
1043 : 139867922 : ior |= array_elements[array_base + i];
1044 : 139867922 : if (ior == 0)
1045 : 91775796 : continue;
1046 : :
1047 : : /* Grab the next bitmap element and chain it. */
1048 : 48092126 : bitmap_element *bitmap_element = bitmap_elements++;
1049 : 48092126 : if (m_head.current)
1050 : 0 : m_head.current->next = bitmap_element;
1051 : : else
1052 : 48092126 : m_head.first = bitmap_element;
1053 : 48092126 : bitmap_element->prev = m_head.current;
1054 : 48092126 : bitmap_element->next = NULL;
1055 : 48092126 : bitmap_element->indx = indx;
1056 : 48092126 : m_head.current = bitmap_element;
1057 : 48092126 : m_head.indx = indx;
1058 : :
1059 : : /* Fill in the bits of the bitmap element. */
1060 : : if (array_element_bits < BITMAP_WORD_BITS)
1061 : : {
1062 : : /* Multiple array elements fit in one element of
1063 : : bitmap_element->bits. */
1064 : : size_t array_i = array_base;
1065 : : for (unsigned int word_i = 0; word_i < BITMAP_ELEMENT_WORDS;
1066 : : ++word_i)
1067 : : {
1068 : : BITMAP_WORD word = 0;
1069 : : for (unsigned int shift = 0;
1070 : : shift < BITMAP_WORD_BITS && array_i < array_size;
1071 : : shift += array_element_bits)
1072 : : word |= array_elements[array_i++] << shift;
1073 : : bitmap_element->bits[word_i] = word;
1074 : : }
1075 : : }
1076 : : else
1077 : : {
1078 : : /* Array elements are the same size as elements of
1079 : : bitmap_element->bits, or are an exact multiple of that size. */
1080 : 48092126 : unsigned int word_i = 0;
1081 : 144276378 : for (unsigned int i = 0; i < array_count; ++i)
1082 : 192368504 : for (unsigned int shift = 0; shift < array_element_bits;
1083 : 96184252 : shift += BITMAP_WORD_BITS)
1084 : 96184252 : bitmap_element->bits[word_i++]
1085 : 96184252 : = array_elements[array_base + i] >> shift;
1086 : 48092126 : while (word_i < BITMAP_ELEMENT_WORDS)
1087 : 0 : bitmap_element->bits[word_i++] = 0;
1088 : : }
1089 : : }
1090 : 139867922 : }
1091 : :
1092 : : #endif /* GCC_BITMAP_H */
|