Branch data Line data Source code
1 : : /* Save and restore call-clobbered registers which are live across a call.
2 : : Copyright (C) 1989-2024 Free Software Foundation, Inc.
3 : :
4 : : This file is part of GCC.
5 : :
6 : : GCC is free software; you can redistribute it and/or modify it under
7 : : the terms of the GNU General Public License as published by the Free
8 : : Software Foundation; either version 3, or (at your option) any later
9 : : version.
10 : :
11 : : GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 : : WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 : : FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 : : for more details.
15 : :
16 : : You should have received a copy of the GNU General Public License
17 : : along with GCC; see the file COPYING3. If not see
18 : : <http://www.gnu.org/licenses/>. */
19 : :
20 : : #include "config.h"
21 : : #include "system.h"
22 : : #include "coretypes.h"
23 : : #include "backend.h"
24 : : #include "rtl.h"
25 : : #include "tree.h"
26 : : #include "predict.h"
27 : : #include "df.h"
28 : : #include "memmodel.h"
29 : : #include "tm_p.h"
30 : : #include "insn-config.h"
31 : : #include "regs.h"
32 : : #include "emit-rtl.h"
33 : : #include "recog.h"
34 : : #include "reload.h"
35 : : #include "alias.h"
36 : : #include "addresses.h"
37 : : #include "dumpfile.h"
38 : : #include "rtl-iter.h"
39 : : #include "target.h"
40 : : #include "function-abi.h"
41 : :
42 : : #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
43 : :
44 : : #define regno_save_mode \
45 : : (this_target_reload->x_regno_save_mode)
46 : : #define cached_reg_save_code \
47 : : (this_target_reload->x_cached_reg_save_code)
48 : : #define cached_reg_restore_code \
49 : : (this_target_reload->x_cached_reg_restore_code)
50 : :
51 : : /* For each hard register, a place on the stack where it can be saved,
52 : : if needed. */
53 : :
54 : : static rtx
55 : : regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
56 : :
57 : : /* The number of elements in the subsequent array. */
58 : : static int save_slots_num;
59 : :
60 : : /* Allocated slots so far. */
61 : : static rtx save_slots[FIRST_PSEUDO_REGISTER];
62 : :
63 : : /* Set of hard regs currently residing in save area (during insn scan). */
64 : :
65 : : static HARD_REG_SET hard_regs_saved;
66 : :
67 : : /* Number of registers currently in hard_regs_saved. */
68 : :
69 : : static int n_regs_saved;
70 : :
71 : : /* Computed by mark_referenced_regs, all regs referenced in a given
72 : : insn. */
73 : : static HARD_REG_SET referenced_regs;
74 : :
75 : :
76 : : typedef void refmarker_fn (rtx *loc, machine_mode mode, int hardregno,
77 : : void *mark_arg);
78 : :
79 : : static int reg_save_code (int, machine_mode);
80 : : static int reg_restore_code (int, machine_mode);
81 : :
82 : : struct saved_hard_reg;
83 : : static void initiate_saved_hard_regs (void);
84 : : static void new_saved_hard_reg (int, int);
85 : : static void finish_saved_hard_regs (void);
86 : : static int saved_hard_reg_compare_func (const void *, const void *);
87 : :
88 : : static void mark_set_regs (rtx, const_rtx, void *);
89 : : static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
90 : : static refmarker_fn mark_reg_as_referenced;
91 : : static refmarker_fn replace_reg_with_saved_mem;
92 : : static int insert_save (class insn_chain *, int, HARD_REG_SET *,
93 : : machine_mode *);
94 : : static int insert_restore (class insn_chain *, int, int, int,
95 : : machine_mode *);
96 : : static class insn_chain *insert_one_insn (class insn_chain *, int, int,
97 : : rtx);
98 : : static void add_stored_regs (rtx, const_rtx, void *);
99 : :
100 : :
101 : :
102 : : static GTY(()) rtx savepat;
103 : : static GTY(()) rtx restpat;
104 : : static GTY(()) rtx test_reg;
105 : : static GTY(()) rtx test_mem;
106 : : static GTY(()) rtx_insn *saveinsn;
107 : : static GTY(()) rtx_insn *restinsn;
108 : :
109 : : /* Return the INSN_CODE used to save register REG in mode MODE. */
110 : : static int
111 : 0 : reg_save_code (int reg, machine_mode mode)
112 : : {
113 : 0 : bool ok;
114 : 0 : if (cached_reg_save_code[reg][mode])
115 : : return cached_reg_save_code[reg][mode];
116 : 0 : if (!targetm.hard_regno_mode_ok (reg, mode))
117 : : {
118 : : /* Depending on how targetm.hard_regno_mode_ok is defined, range
119 : : propagation might deduce here that reg >= FIRST_PSEUDO_REGISTER.
120 : : So the assert below silences a warning. */
121 : 0 : gcc_assert (reg < FIRST_PSEUDO_REGISTER);
122 : 0 : cached_reg_save_code[reg][mode] = -1;
123 : 0 : cached_reg_restore_code[reg][mode] = -1;
124 : 0 : return -1;
125 : : }
126 : :
127 : : /* Update the register number and modes of the register
128 : : and memory operand. */
129 : 0 : set_mode_and_regno (test_reg, mode, reg);
130 : 0 : PUT_MODE (test_mem, mode);
131 : :
132 : : /* Force re-recognition of the modified insns. */
133 : 0 : INSN_CODE (saveinsn) = -1;
134 : 0 : INSN_CODE (restinsn) = -1;
135 : :
136 : 0 : cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
137 : 0 : cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
138 : :
139 : : /* Now extract both insns and see if we can meet their
140 : : constraints. We don't know here whether the save and restore will
141 : : be in size- or speed-tuned code, so just use the set of enabled
142 : : alternatives. */
143 : 0 : ok = (cached_reg_save_code[reg][mode] != -1
144 : 0 : && cached_reg_restore_code[reg][mode] != -1);
145 : 0 : if (ok)
146 : : {
147 : 0 : extract_insn (saveinsn);
148 : 0 : ok = constrain_operands (1, get_enabled_alternatives (saveinsn));
149 : 0 : extract_insn (restinsn);
150 : 0 : ok &= constrain_operands (1, get_enabled_alternatives (restinsn));
151 : : }
152 : :
153 : 0 : if (! ok)
154 : : {
155 : 0 : cached_reg_save_code[reg][mode] = -1;
156 : 0 : cached_reg_restore_code[reg][mode] = -1;
157 : : }
158 : 0 : gcc_assert (cached_reg_save_code[reg][mode]);
159 : : return cached_reg_save_code[reg][mode];
160 : : }
161 : :
162 : : /* Return the INSN_CODE used to restore register REG in mode MODE. */
163 : : static int
164 : 0 : reg_restore_code (int reg, machine_mode mode)
165 : : {
166 : 0 : if (cached_reg_restore_code[reg][mode])
167 : : return cached_reg_restore_code[reg][mode];
168 : : /* Populate our cache. */
169 : 0 : reg_save_code (reg, mode);
170 : 0 : return cached_reg_restore_code[reg][mode];
171 : : }
172 : :
173 : : /* Initialize for caller-save.
174 : :
175 : : Look at all the hard registers that are used by a call and for which
176 : : reginfo.cc has not already excluded from being used across a call.
177 : :
178 : : Ensure that we can find a mode to save the register and that there is a
179 : : simple insn to save and restore the register. This latter check avoids
180 : : problems that would occur if we tried to save the MQ register of some
181 : : machines directly into memory. */
182 : :
183 : : void
184 : 0 : init_caller_save (void)
185 : : {
186 : 0 : rtx addr_reg;
187 : 0 : int offset;
188 : 0 : rtx address;
189 : 0 : int i, j;
190 : :
191 : 0 : if (caller_save_initialized_p)
192 : 0 : return;
193 : :
194 : 0 : caller_save_initialized_p = true;
195 : :
196 : : /* First find all the registers that we need to deal with and all
197 : : the modes that they can have. If we can't find a mode to use,
198 : : we can't have the register live over calls. */
199 : :
200 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
201 : 0 : for (j = 1; j <= MOVE_MAX_WORDS; j++)
202 : : {
203 : 0 : regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j, VOIDmode);
204 : 0 : if (regno_save_mode[i][j] == VOIDmode && j == 1)
205 : 0 : CLEAR_HARD_REG_BIT (savable_regs, i);
206 : : }
207 : :
208 : : /* The following code tries to approximate the conditions under which
209 : : we can easily save and restore a register without scratch registers or
210 : : other complexities. It will usually work, except under conditions where
211 : : the validity of an insn operand is dependent on the address offset.
212 : : No such cases are currently known.
213 : :
214 : : We first find a typical offset from some BASE_REG_CLASS register.
215 : : This address is chosen by finding the first register in the class
216 : : and by finding the smallest power of two that is a valid offset from
217 : : that register in every mode we will use to save registers. */
218 : :
219 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
220 : 0 : if (TEST_HARD_REG_BIT
221 : 0 : (reg_class_contents
222 : 0 : [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
223 : 0 : PLUS, CONST_INT)], i))
224 : : break;
225 : :
226 : 0 : gcc_assert (i < FIRST_PSEUDO_REGISTER);
227 : :
228 : 0 : addr_reg = gen_rtx_REG (Pmode, i);
229 : :
230 : 0 : for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
231 : : {
232 : 0 : address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
233 : :
234 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
235 : 0 : if (regno_save_mode[i][1] != VOIDmode
236 : 0 : && ! strict_memory_address_p (regno_save_mode[i][1], address))
237 : : break;
238 : :
239 : 0 : if (i == FIRST_PSEUDO_REGISTER)
240 : : break;
241 : : }
242 : :
243 : : /* If we didn't find a valid address, we must use register indirect. */
244 : 0 : if (offset == 0)
245 : 0 : address = addr_reg;
246 : :
247 : : /* Next we try to form an insn to save and restore the register. We
248 : : see if such an insn is recognized and meets its constraints.
249 : :
250 : : To avoid lots of unnecessary RTL allocation, we construct all the RTL
251 : : once, then modify the memory and register operands in-place. */
252 : :
253 : 0 : test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
254 : 0 : test_mem = gen_rtx_MEM (word_mode, address);
255 : 0 : savepat = gen_rtx_SET (test_mem, test_reg);
256 : 0 : restpat = gen_rtx_SET (test_reg, test_mem);
257 : :
258 : 0 : saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, savepat, 0, -1, 0);
259 : 0 : restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, restpat, 0, -1, 0);
260 : :
261 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
262 : 0 : for (j = 1; j <= MOVE_MAX_WORDS; j++)
263 : 0 : if (reg_save_code (i,regno_save_mode[i][j]) == -1)
264 : : {
265 : 0 : regno_save_mode[i][j] = VOIDmode;
266 : 0 : if (j == 1)
267 : 0 : CLEAR_HARD_REG_BIT (savable_regs, i);
268 : : }
269 : : }
270 : :
271 : :
272 : :
273 : : /* Initialize save areas by showing that we haven't allocated any yet. */
274 : :
275 : : void
276 : 0 : init_save_areas (void)
277 : : {
278 : 0 : int i, j;
279 : :
280 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
281 : 0 : for (j = 1; j <= MOVE_MAX_WORDS; j++)
282 : 0 : regno_save_mem[i][j] = 0;
283 : 0 : save_slots_num = 0;
284 : :
285 : 0 : }
286 : :
287 : : /* The structure represents a hard register which should be saved
288 : : through the call. It is used when the integrated register
289 : : allocator (IRA) is used and sharing save slots is on. */
290 : : struct saved_hard_reg
291 : : {
292 : : /* Order number starting with 0. */
293 : : int num;
294 : : /* The hard regno. */
295 : : int hard_regno;
296 : : /* Execution frequency of all calls through which given hard
297 : : register should be saved. */
298 : : int call_freq;
299 : : /* Stack slot reserved to save the hard register through calls. */
300 : : rtx slot;
301 : : /* True if it is first hard register in the chain of hard registers
302 : : sharing the same stack slot. */
303 : : int first_p;
304 : : /* Order number of the next hard register structure with the same
305 : : slot in the chain. -1 represents end of the chain. */
306 : : int next;
307 : : };
308 : :
309 : : /* Map: hard register number to the corresponding structure. */
310 : : static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
311 : :
312 : : /* The number of all structures representing hard registers should be
313 : : saved, in order words, the number of used elements in the following
314 : : array. */
315 : : static int saved_regs_num;
316 : :
317 : : /* Pointers to all the structures. Index is the order number of the
318 : : corresponding structure. */
319 : : static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
320 : :
321 : : /* First called function for work with saved hard registers. */
322 : : static void
323 : 0 : initiate_saved_hard_regs (void)
324 : : {
325 : 0 : int i;
326 : :
327 : 0 : saved_regs_num = 0;
328 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
329 : 0 : hard_reg_map[i] = NULL;
330 : 0 : }
331 : :
332 : : /* Allocate and return new saved hard register with given REGNO and
333 : : CALL_FREQ. */
334 : : static void
335 : 0 : new_saved_hard_reg (int regno, int call_freq)
336 : : {
337 : 0 : struct saved_hard_reg *saved_reg;
338 : :
339 : 0 : saved_reg
340 : 0 : = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
341 : 0 : hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
342 : 0 : saved_reg->num = saved_regs_num++;
343 : 0 : saved_reg->hard_regno = regno;
344 : 0 : saved_reg->call_freq = call_freq;
345 : 0 : saved_reg->first_p = false;
346 : 0 : saved_reg->next = -1;
347 : 0 : }
348 : :
349 : : /* Free memory allocated for the saved hard registers. */
350 : : static void
351 : 0 : finish_saved_hard_regs (void)
352 : : {
353 : 0 : int i;
354 : :
355 : 0 : for (i = 0; i < saved_regs_num; i++)
356 : 0 : free (all_saved_regs[i]);
357 : 0 : }
358 : :
359 : : /* The function is used to sort the saved hard register structures
360 : : according their frequency. */
361 : : static int
362 : 0 : saved_hard_reg_compare_func (const void *v1p, const void *v2p)
363 : : {
364 : 0 : const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
365 : 0 : const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
366 : :
367 : 0 : if (flag_omit_frame_pointer)
368 : : {
369 : 0 : if (p1->call_freq - p2->call_freq != 0)
370 : 0 : return p1->call_freq - p2->call_freq;
371 : : }
372 : 0 : else if (p2->call_freq - p1->call_freq != 0)
373 : 0 : return p2->call_freq - p1->call_freq;
374 : :
375 : 0 : return p1->num - p2->num;
376 : : }
377 : :
378 : : /* Allocate save areas for any hard registers that might need saving.
379 : : We take a conservative approach here and look for call-clobbered hard
380 : : registers that are assigned to pseudos that cross calls. This may
381 : : overestimate slightly (especially if some of these registers are later
382 : : used as spill registers), but it should not be significant.
383 : :
384 : : For IRA we use priority coloring to decrease stack slots needed for
385 : : saving hard registers through calls. We build conflicts for them
386 : : to do coloring.
387 : :
388 : : Future work:
389 : :
390 : : In the fallback case we should iterate backwards across all possible
391 : : modes for the save, choosing the largest available one instead of
392 : : falling back to the smallest mode immediately. (eg TF -> DF -> SF).
393 : :
394 : : We do not try to use "move multiple" instructions that exist
395 : : on some machines (such as the 68k moveml). It could be a win to try
396 : : and use them when possible. The hard part is doing it in a way that is
397 : : machine independent since they might be saving non-consecutive
398 : : registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
399 : :
400 : : void
401 : 0 : setup_save_areas (void)
402 : : {
403 : 0 : int i, j, k, freq;
404 : 0 : HARD_REG_SET hard_regs_used;
405 : 0 : struct saved_hard_reg *saved_reg;
406 : 0 : rtx_insn *insn;
407 : 0 : class insn_chain *chain, *next;
408 : 0 : unsigned int regno;
409 : 0 : HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
410 : 0 : reg_set_iterator rsi;
411 : :
412 : 0 : CLEAR_HARD_REG_SET (hard_regs_used);
413 : :
414 : : /* Find every CALL_INSN and record which hard regs are live across the
415 : : call into HARD_REG_MAP and HARD_REGS_USED. */
416 : 0 : initiate_saved_hard_regs ();
417 : : /* Create hard reg saved regs. */
418 : 0 : for (chain = reload_insn_chain; chain != 0; chain = next)
419 : : {
420 : 0 : rtx cheap;
421 : :
422 : 0 : insn = chain->insn;
423 : 0 : next = chain->next;
424 : 0 : if (!CALL_P (insn)
425 : 0 : || find_reg_note (insn, REG_NORETURN, NULL))
426 : 0 : continue;
427 : 0 : freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
428 : 0 : REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
429 : : &chain->live_throughout);
430 : 0 : used_regs = insn_callee_abi (insn).full_reg_clobbers ();
431 : :
432 : : /* Record all registers set in this call insn. These don't
433 : : need to be saved. N.B. the call insn might set a subreg
434 : : of a multi-hard-reg pseudo; then the pseudo is considered
435 : : live during the call, but the subreg that is set
436 : : isn't. */
437 : 0 : CLEAR_HARD_REG_SET (this_insn_sets);
438 : 0 : note_stores (insn, mark_set_regs, &this_insn_sets);
439 : : /* Sibcalls are considered to set the return value. */
440 : 0 : if (SIBLING_CALL_P (insn) && crtl->return_rtx)
441 : 0 : mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
442 : :
443 : 0 : used_regs &= ~(fixed_reg_set | this_insn_sets);
444 : 0 : hard_regs_to_save &= used_regs & savable_regs;
445 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
446 : 0 : if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
447 : : {
448 : 0 : if (hard_reg_map[regno] != NULL)
449 : 0 : hard_reg_map[regno]->call_freq += freq;
450 : : else
451 : 0 : new_saved_hard_reg (regno, freq);
452 : 0 : SET_HARD_REG_BIT (hard_regs_used, regno);
453 : : }
454 : 0 : cheap = find_reg_note (insn, REG_RETURNED, NULL);
455 : 0 : if (cheap)
456 : 0 : cheap = XEXP (cheap, 0);
457 : : /* Look through all live pseudos, mark their hard registers. */
458 : 0 : EXECUTE_IF_SET_IN_REG_SET
459 : : (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
460 : : {
461 : 0 : int r = reg_renumber[regno];
462 : 0 : int bound;
463 : :
464 : 0 : if (r < 0 || regno_reg_rtx[regno] == cheap)
465 : 0 : continue;
466 : :
467 : 0 : bound = r + hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
468 : 0 : for (; r < bound; r++)
469 : 0 : if (TEST_HARD_REG_BIT (used_regs, r))
470 : : {
471 : 0 : if (hard_reg_map[r] != NULL)
472 : 0 : hard_reg_map[r]->call_freq += freq;
473 : : else
474 : 0 : new_saved_hard_reg (r, freq);
475 : 0 : SET_HARD_REG_BIT (hard_regs_to_save, r);
476 : 0 : SET_HARD_REG_BIT (hard_regs_used, r);
477 : : }
478 : : }
479 : : }
480 : :
481 : : /* If requested, figure out which hard regs can share save slots. */
482 : 0 : if (optimize && flag_ira_share_save_slots)
483 : : {
484 : 0 : rtx slot;
485 : 0 : char *saved_reg_conflicts;
486 : 0 : int next_k;
487 : 0 : struct saved_hard_reg *saved_reg2, *saved_reg3;
488 : 0 : int call_saved_regs_num;
489 : 0 : struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
490 : 0 : int best_slot_num;
491 : 0 : int prev_save_slots_num;
492 : 0 : rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
493 : :
494 : : /* Find saved hard register conflicts. */
495 : 0 : saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
496 : 0 : memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
497 : 0 : for (chain = reload_insn_chain; chain != 0; chain = next)
498 : : {
499 : 0 : rtx cheap;
500 : 0 : call_saved_regs_num = 0;
501 : 0 : insn = chain->insn;
502 : 0 : next = chain->next;
503 : 0 : if (!CALL_P (insn)
504 : 0 : || find_reg_note (insn, REG_NORETURN, NULL))
505 : 0 : continue;
506 : :
507 : 0 : cheap = find_reg_note (insn, REG_RETURNED, NULL);
508 : 0 : if (cheap)
509 : 0 : cheap = XEXP (cheap, 0);
510 : :
511 : 0 : REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
512 : : &chain->live_throughout);
513 : 0 : used_regs = insn_callee_abi (insn).full_reg_clobbers ();
514 : :
515 : : /* Record all registers set in this call insn. These don't
516 : : need to be saved. N.B. the call insn might set a subreg
517 : : of a multi-hard-reg pseudo; then the pseudo is considered
518 : : live during the call, but the subreg that is set
519 : : isn't. */
520 : 0 : CLEAR_HARD_REG_SET (this_insn_sets);
521 : 0 : note_stores (insn, mark_set_regs, &this_insn_sets);
522 : : /* Sibcalls are considered to set the return value,
523 : : compare df-scan.cc:df_get_call_refs. */
524 : 0 : if (SIBLING_CALL_P (insn) && crtl->return_rtx)
525 : 0 : mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
526 : :
527 : 0 : used_regs &= ~(fixed_reg_set | this_insn_sets);
528 : 0 : hard_regs_to_save &= used_regs & savable_regs;
529 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
530 : 0 : if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
531 : : {
532 : 0 : gcc_assert (hard_reg_map[regno] != NULL);
533 : 0 : call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
534 : : }
535 : : /* Look through all live pseudos, mark their hard registers. */
536 : 0 : EXECUTE_IF_SET_IN_REG_SET
537 : : (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
538 : : {
539 : 0 : int r = reg_renumber[regno];
540 : 0 : int bound;
541 : :
542 : 0 : if (r < 0 || regno_reg_rtx[regno] == cheap)
543 : 0 : continue;
544 : :
545 : 0 : bound = r + hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
546 : 0 : for (; r < bound; r++)
547 : 0 : if (TEST_HARD_REG_BIT (used_regs, r))
548 : 0 : call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
549 : : }
550 : 0 : for (i = 0; i < call_saved_regs_num; i++)
551 : : {
552 : 0 : saved_reg = call_saved_regs[i];
553 : 0 : for (j = 0; j < call_saved_regs_num; j++)
554 : 0 : if (i != j)
555 : : {
556 : 0 : saved_reg2 = call_saved_regs[j];
557 : 0 : saved_reg_conflicts[saved_reg->num * saved_regs_num
558 : 0 : + saved_reg2->num]
559 : 0 : = saved_reg_conflicts[saved_reg2->num * saved_regs_num
560 : 0 : + saved_reg->num]
561 : 0 : = true;
562 : : }
563 : : }
564 : : }
565 : : /* Sort saved hard regs. */
566 : 0 : qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
567 : : saved_hard_reg_compare_func);
568 : : /* Initiate slots available from the previous reload
569 : : iteration. */
570 : 0 : prev_save_slots_num = save_slots_num;
571 : 0 : memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
572 : 0 : save_slots_num = 0;
573 : : /* Allocate stack slots for the saved hard registers. */
574 : 0 : for (i = 0; i < saved_regs_num; i++)
575 : : {
576 : 0 : saved_reg = all_saved_regs[i];
577 : 0 : regno = saved_reg->hard_regno;
578 : 0 : for (j = 0; j < i; j++)
579 : : {
580 : 0 : saved_reg2 = all_saved_regs[j];
581 : 0 : if (! saved_reg2->first_p)
582 : 0 : continue;
583 : 0 : slot = saved_reg2->slot;
584 : 0 : for (k = j; k >= 0; k = next_k)
585 : : {
586 : 0 : saved_reg3 = all_saved_regs[k];
587 : 0 : next_k = saved_reg3->next;
588 : 0 : if (saved_reg_conflicts[saved_reg->num * saved_regs_num
589 : 0 : + saved_reg3->num])
590 : : break;
591 : : }
592 : 0 : if (k < 0
593 : 0 : && known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
594 : : GET_MODE_SIZE (regno_save_mode
595 : : [saved_reg2->hard_regno][1])))
596 : : {
597 : 0 : saved_reg->slot
598 : 0 : = adjust_address_nv
599 : : (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
600 : 0 : regno_save_mem[regno][1] = saved_reg->slot;
601 : 0 : saved_reg->next = saved_reg2->next;
602 : 0 : saved_reg2->next = i;
603 : 0 : if (dump_file != NULL)
604 : 0 : fprintf (dump_file, "%d uses slot of %d\n",
605 : : regno, saved_reg2->hard_regno);
606 : : break;
607 : : }
608 : : }
609 : 0 : if (j == i)
610 : : {
611 : 0 : saved_reg->first_p = true;
612 : 0 : for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
613 : : {
614 : 0 : slot = prev_save_slots[j];
615 : 0 : if (slot == NULL_RTX)
616 : 0 : continue;
617 : 0 : if (known_le (GET_MODE_SIZE (regno_save_mode[regno][1]),
618 : : GET_MODE_SIZE (GET_MODE (slot)))
619 : 0 : && best_slot_num < 0)
620 : 0 : best_slot_num = j;
621 : 0 : if (GET_MODE (slot) == regno_save_mode[regno][1])
622 : : break;
623 : : }
624 : 0 : if (best_slot_num >= 0)
625 : : {
626 : 0 : saved_reg->slot = prev_save_slots[best_slot_num];
627 : 0 : saved_reg->slot
628 : 0 : = adjust_address_nv
629 : : (saved_reg->slot,
630 : : regno_save_mode[saved_reg->hard_regno][1], 0);
631 : 0 : if (dump_file != NULL)
632 : 0 : fprintf (dump_file,
633 : : "%d uses a slot from prev iteration\n", regno);
634 : 0 : prev_save_slots[best_slot_num] = NULL_RTX;
635 : 0 : if (best_slot_num + 1 == prev_save_slots_num)
636 : 0 : prev_save_slots_num--;
637 : : }
638 : : else
639 : : {
640 : 0 : saved_reg->slot
641 : 0 : = assign_stack_local_1
642 : 0 : (regno_save_mode[regno][1],
643 : 0 : GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
644 : : ASLK_REDUCE_ALIGN);
645 : 0 : if (dump_file != NULL)
646 : 0 : fprintf (dump_file, "%d uses a new slot\n", regno);
647 : : }
648 : 0 : regno_save_mem[regno][1] = saved_reg->slot;
649 : 0 : save_slots[save_slots_num++] = saved_reg->slot;
650 : : }
651 : : }
652 : 0 : free (saved_reg_conflicts);
653 : 0 : finish_saved_hard_regs ();
654 : 0 : }
655 : : else
656 : : {
657 : : /* We are not sharing slots.
658 : :
659 : : Run through all the call-used hard-registers and allocate
660 : : space for each in the caller-save area. Try to allocate space
661 : : in a manner which allows multi-register saves/restores to be done. */
662 : :
663 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
664 : 0 : for (j = MOVE_MAX_WORDS; j > 0; j--)
665 : : {
666 : 0 : int do_save = 1;
667 : :
668 : : /* If no mode exists for this size, try another. Also break out
669 : : if we have already saved this hard register. */
670 : 0 : if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
671 : 0 : continue;
672 : :
673 : : /* See if any register in this group has been saved. */
674 : 0 : for (k = 0; k < j; k++)
675 : 0 : if (regno_save_mem[i + k][1])
676 : : {
677 : : do_save = 0;
678 : : break;
679 : : }
680 : 0 : if (! do_save)
681 : 0 : continue;
682 : :
683 : 0 : for (k = 0; k < j; k++)
684 : 0 : if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
685 : : {
686 : : do_save = 0;
687 : : break;
688 : : }
689 : 0 : if (! do_save)
690 : 0 : continue;
691 : :
692 : : /* We have found an acceptable mode to store in. Since
693 : : hard register is always saved in the widest mode
694 : : available, the mode may be wider than necessary, it is
695 : : OK to reduce the alignment of spill space. We will
696 : : verify that it is equal to or greater than required
697 : : when we restore and save the hard register in
698 : : insert_restore and insert_save. */
699 : 0 : regno_save_mem[i][j]
700 : 0 : = assign_stack_local_1 (regno_save_mode[i][j],
701 : 0 : GET_MODE_SIZE (regno_save_mode[i][j]),
702 : : 0, ASLK_REDUCE_ALIGN);
703 : :
704 : : /* Setup single word save area just in case... */
705 : 0 : for (k = 0; k < j; k++)
706 : : /* This should not depend on WORDS_BIG_ENDIAN.
707 : : The order of words in regs is the same as in memory. */
708 : 0 : regno_save_mem[i + k][1]
709 : 0 : = adjust_address_nv (regno_save_mem[i][j],
710 : : regno_save_mode[i + k][1],
711 : : k * UNITS_PER_WORD);
712 : : }
713 : : }
714 : :
715 : : /* Now loop again and set the alias set of any save areas we made to
716 : : the alias set used to represent frame objects. */
717 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
718 : 0 : for (j = MOVE_MAX_WORDS; j > 0; j--)
719 : 0 : if (regno_save_mem[i][j] != 0)
720 : 0 : set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
721 : 0 : }
722 : :
723 : :
724 : :
725 : : /* Find the places where hard regs are live across calls and save them. */
726 : :
727 : : void
728 : 0 : save_call_clobbered_regs (void)
729 : : {
730 : 0 : class insn_chain *chain, *next, *last = NULL;
731 : 0 : machine_mode save_mode [FIRST_PSEUDO_REGISTER];
732 : :
733 : : /* Computed in mark_set_regs, holds all registers set by the current
734 : : instruction. */
735 : 0 : HARD_REG_SET this_insn_sets;
736 : :
737 : 0 : CLEAR_HARD_REG_SET (hard_regs_saved);
738 : 0 : n_regs_saved = 0;
739 : :
740 : 0 : for (chain = reload_insn_chain; chain != 0; chain = next)
741 : : {
742 : 0 : rtx_insn *insn = chain->insn;
743 : 0 : enum rtx_code code = GET_CODE (insn);
744 : :
745 : 0 : next = chain->next;
746 : :
747 : 0 : gcc_assert (!chain->is_caller_save_insn);
748 : :
749 : 0 : if (NONDEBUG_INSN_P (insn))
750 : : {
751 : : /* If some registers have been saved, see if INSN references
752 : : any of them. We must restore them before the insn if so. */
753 : :
754 : 0 : if (n_regs_saved)
755 : : {
756 : 0 : int regno;
757 : 0 : HARD_REG_SET this_insn_sets;
758 : :
759 : 0 : if (code == JUMP_INSN)
760 : : /* Restore all registers if this is a JUMP_INSN. */
761 : 0 : referenced_regs = hard_regs_saved;
762 : : else
763 : : {
764 : 0 : CLEAR_HARD_REG_SET (referenced_regs);
765 : 0 : mark_referenced_regs (&PATTERN (insn),
766 : : mark_reg_as_referenced, NULL);
767 : 0 : referenced_regs &= hard_regs_saved;
768 : : }
769 : :
770 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
771 : 0 : if (TEST_HARD_REG_BIT (referenced_regs, regno))
772 : 0 : regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
773 : : save_mode);
774 : : /* If a saved register is set after the call, this means we no
775 : : longer should restore it. This can happen when parts of a
776 : : multi-word pseudo do not conflict with other pseudos, so
777 : : IRA may allocate the same hard register for both. One may
778 : : be live across the call, while the other is set
779 : : afterwards. */
780 : 0 : CLEAR_HARD_REG_SET (this_insn_sets);
781 : 0 : note_stores (insn, mark_set_regs, &this_insn_sets);
782 : 0 : hard_regs_saved &= ~this_insn_sets;
783 : : }
784 : :
785 : 0 : if (code == CALL_INSN
786 : 0 : && ! SIBLING_CALL_P (insn)
787 : 0 : && ! find_reg_note (insn, REG_NORETURN, NULL))
788 : : {
789 : 0 : unsigned regno;
790 : 0 : HARD_REG_SET hard_regs_to_save;
791 : 0 : reg_set_iterator rsi;
792 : 0 : rtx cheap;
793 : :
794 : 0 : cheap = find_reg_note (insn, REG_RETURNED, NULL);
795 : 0 : if (cheap)
796 : 0 : cheap = XEXP (cheap, 0);
797 : :
798 : : /* Use the register life information in CHAIN to compute which
799 : : regs are live during the call. */
800 : 0 : REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
801 : : &chain->live_throughout);
802 : : /* Save hard registers always in the widest mode available. */
803 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
804 : 0 : if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
805 : 0 : save_mode [regno] = regno_save_mode [regno][1];
806 : : else
807 : 0 : save_mode [regno] = VOIDmode;
808 : :
809 : : /* Look through all live pseudos, mark their hard registers
810 : : and choose proper mode for saving. */
811 : 0 : EXECUTE_IF_SET_IN_REG_SET
812 : : (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
813 : : {
814 : 0 : int r = reg_renumber[regno];
815 : 0 : int nregs;
816 : 0 : machine_mode mode;
817 : :
818 : 0 : if (r < 0 || regno_reg_rtx[regno] == cheap)
819 : 0 : continue;
820 : 0 : nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (regno));
821 : 0 : mode = HARD_REGNO_CALLER_SAVE_MODE
822 : : (r, nregs, PSEUDO_REGNO_MODE (regno));
823 : 0 : if (partial_subreg_p (save_mode[r], mode))
824 : 0 : save_mode[r] = mode;
825 : 0 : while (nregs-- > 0)
826 : 0 : SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
827 : : }
828 : :
829 : : /* Record all registers set in this call insn. These don't need
830 : : to be saved. N.B. the call insn might set a subreg of a
831 : : multi-hard-reg pseudo; then the pseudo is considered live
832 : : during the call, but the subreg that is set isn't. */
833 : 0 : CLEAR_HARD_REG_SET (this_insn_sets);
834 : 0 : note_stores (insn, mark_set_regs, &this_insn_sets);
835 : :
836 : : /* Compute which hard regs must be saved before this call. */
837 : 0 : function_abi callee_abi = insn_callee_abi (insn);
838 : 0 : hard_regs_to_save &= ~(fixed_reg_set
839 : 0 : | this_insn_sets
840 : 0 : | hard_regs_saved);
841 : 0 : hard_regs_to_save &= savable_regs;
842 : 0 : hard_regs_to_save &= callee_abi.full_reg_clobbers ();
843 : :
844 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
845 : 0 : if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
846 : 0 : regno += insert_save (chain, regno,
847 : : &hard_regs_to_save, save_mode);
848 : :
849 : : /* Must recompute n_regs_saved. */
850 : 0 : n_regs_saved = 0;
851 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
852 : 0 : if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
853 : 0 : n_regs_saved++;
854 : :
855 : 0 : if (cheap
856 : 0 : && HARD_REGISTER_P (cheap)
857 : 0 : && callee_abi.clobbers_reg_p (GET_MODE (cheap),
858 : : REGNO (cheap)))
859 : : {
860 : 0 : rtx dest, newpat;
861 : 0 : rtx pat = PATTERN (insn);
862 : 0 : if (GET_CODE (pat) == PARALLEL)
863 : 0 : pat = XVECEXP (pat, 0, 0);
864 : 0 : dest = SET_DEST (pat);
865 : : /* For multiple return values dest is PARALLEL.
866 : : Currently we handle only single return value case. */
867 : 0 : if (REG_P (dest))
868 : : {
869 : 0 : newpat = gen_rtx_SET (cheap, copy_rtx (dest));
870 : 0 : chain = insert_one_insn (chain, 0, -1, newpat);
871 : : }
872 : : }
873 : : }
874 : : last = chain;
875 : : }
876 : 0 : else if (DEBUG_INSN_P (insn) && n_regs_saved)
877 : 0 : mark_referenced_regs (&PATTERN (insn),
878 : : replace_reg_with_saved_mem,
879 : : save_mode);
880 : :
881 : 0 : if (chain->next == 0 || chain->next->block != chain->block)
882 : : {
883 : 0 : int regno;
884 : : /* At the end of the basic block, we must restore any registers that
885 : : remain saved. If the last insn in the block is a JUMP_INSN, put
886 : : the restore before the insn, otherwise, put it after the insn. */
887 : :
888 : 0 : if (n_regs_saved
889 : 0 : && DEBUG_INSN_P (insn)
890 : 0 : && last
891 : 0 : && last->block == chain->block)
892 : : {
893 : 0 : rtx_insn *ins, *prev;
894 : 0 : basic_block bb = BLOCK_FOR_INSN (insn);
895 : :
896 : : /* When adding hard reg restores after a DEBUG_INSN, move
897 : : all notes between last real insn and this DEBUG_INSN after
898 : : the DEBUG_INSN, otherwise we could get code
899 : : -g/-g0 differences. */
900 : 0 : for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
901 : : {
902 : 0 : prev = PREV_INSN (ins);
903 : 0 : if (NOTE_P (ins))
904 : : {
905 : 0 : SET_NEXT_INSN (prev) = NEXT_INSN (ins);
906 : 0 : SET_PREV_INSN (NEXT_INSN (ins)) = prev;
907 : 0 : SET_PREV_INSN (ins) = insn;
908 : 0 : SET_NEXT_INSN (ins) = NEXT_INSN (insn);
909 : 0 : SET_NEXT_INSN (insn) = ins;
910 : 0 : if (NEXT_INSN (ins))
911 : 0 : SET_PREV_INSN (NEXT_INSN (ins)) = ins;
912 : 0 : if (BB_END (bb) == insn)
913 : 0 : BB_END (bb) = ins;
914 : : }
915 : : else
916 : 0 : gcc_assert (DEBUG_INSN_P (ins));
917 : : }
918 : : }
919 : 0 : last = NULL;
920 : :
921 : 0 : if (n_regs_saved)
922 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
923 : 0 : if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
924 : 0 : regno += insert_restore (chain, JUMP_P (insn),
925 : 0 : regno, MOVE_MAX_WORDS, save_mode);
926 : : }
927 : : }
928 : 0 : }
929 : :
930 : : /* Here from note_stores, or directly from save_call_clobbered_regs, when
931 : : an insn stores a value in a register.
932 : : Set the proper bit or bits in this_insn_sets. All pseudos that have
933 : : been assigned hard regs have had their register number changed already,
934 : : so we can ignore pseudos. */
935 : : static void
936 : 0 : mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
937 : : {
938 : 0 : int regno, endregno, i;
939 : 0 : HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
940 : :
941 : 0 : if (GET_CODE (reg) == SUBREG)
942 : : {
943 : 0 : rtx inner = SUBREG_REG (reg);
944 : 0 : if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
945 : : return;
946 : 0 : regno = subreg_regno (reg);
947 : 0 : endregno = regno + subreg_nregs (reg);
948 : : }
949 : 0 : else if (REG_P (reg)
950 : 0 : && REGNO (reg) < FIRST_PSEUDO_REGISTER)
951 : : {
952 : 0 : regno = REGNO (reg);
953 : 0 : endregno = END_REGNO (reg);
954 : : }
955 : : else
956 : : return;
957 : :
958 : 0 : for (i = regno; i < endregno; i++)
959 : 0 : SET_HARD_REG_BIT (*this_insn_sets, i);
960 : : }
961 : :
962 : : /* Here from note_stores when an insn stores a value in a register.
963 : : Set the proper bit or bits in the passed regset. All pseudos that have
964 : : been assigned hard regs have had their register number changed already,
965 : : so we can ignore pseudos. */
966 : : static void
967 : 0 : add_stored_regs (rtx reg, const_rtx setter, void *data)
968 : : {
969 : 0 : int regno, endregno, i;
970 : 0 : machine_mode mode = GET_MODE (reg);
971 : 0 : int offset = 0;
972 : :
973 : 0 : if (GET_CODE (setter) == CLOBBER)
974 : : return;
975 : :
976 : 0 : if (GET_CODE (reg) == SUBREG
977 : 0 : && REG_P (SUBREG_REG (reg))
978 : 0 : && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
979 : : {
980 : 0 : offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
981 : 0 : GET_MODE (SUBREG_REG (reg)),
982 : 0 : SUBREG_BYTE (reg),
983 : : GET_MODE (reg));
984 : 0 : regno = REGNO (SUBREG_REG (reg)) + offset;
985 : 0 : endregno = regno + subreg_nregs (reg);
986 : : }
987 : : else
988 : : {
989 : 0 : if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
990 : : return;
991 : :
992 : 0 : regno = REGNO (reg) + offset;
993 : 0 : endregno = end_hard_regno (mode, regno);
994 : : }
995 : :
996 : 0 : for (i = regno; i < endregno; i++)
997 : 0 : SET_REGNO_REG_SET ((regset) data, i);
998 : : }
999 : :
1000 : : /* Walk X and record all referenced registers in REFERENCED_REGS. */
1001 : : static void
1002 : 0 : mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
1003 : : {
1004 : 0 : enum rtx_code code = GET_CODE (*loc);
1005 : 0 : const char *fmt;
1006 : 0 : int i, j;
1007 : :
1008 : 0 : if (code == SET)
1009 : 0 : mark_referenced_regs (&SET_SRC (*loc), mark, arg);
1010 : 0 : if (code == SET || code == CLOBBER)
1011 : : {
1012 : 0 : loc = &SET_DEST (*loc);
1013 : 0 : code = GET_CODE (*loc);
1014 : 0 : if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
1015 : 0 : || code == PC
1016 : 0 : || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1017 : 0 : && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1018 : : /* If we're setting only part of a multi-word register,
1019 : : we shall mark it as referenced, because the words
1020 : : that are not being set should be restored. */
1021 : 0 : && !read_modify_subreg_p (*loc)))
1022 : 0 : return;
1023 : : }
1024 : 0 : if (code == MEM || code == SUBREG)
1025 : : {
1026 : 0 : loc = &XEXP (*loc, 0);
1027 : 0 : code = GET_CODE (*loc);
1028 : : }
1029 : :
1030 : 0 : if (code == REG)
1031 : : {
1032 : 0 : int regno = REGNO (*loc);
1033 : 0 : int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1034 : 0 : : reg_renumber[regno]);
1035 : :
1036 : 0 : if (hardregno >= 0)
1037 : 0 : mark (loc, GET_MODE (*loc), hardregno, arg);
1038 : 0 : else if (arg)
1039 : : /* ??? Will we ever end up with an equiv expression in a debug
1040 : : insn, that would have required restoring a reg, or will
1041 : : reload take care of it for us? */
1042 : : return;
1043 : : /* If this is a pseudo that did not get a hard register, scan its
1044 : : memory location, since it might involve the use of another
1045 : : register, which might be saved. */
1046 : 0 : else if (reg_equiv_mem (regno) != 0)
1047 : 0 : mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
1048 : 0 : else if (reg_equiv_address (regno) != 0)
1049 : 0 : mark_referenced_regs (®_equiv_address (regno), mark, arg);
1050 : 0 : return;
1051 : : }
1052 : :
1053 : 0 : fmt = GET_RTX_FORMAT (code);
1054 : 0 : for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1055 : : {
1056 : 0 : if (fmt[i] == 'e')
1057 : 0 : mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1058 : 0 : else if (fmt[i] == 'E')
1059 : 0 : for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1060 : 0 : mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1061 : : }
1062 : : }
1063 : :
1064 : : /* Parameter function for mark_referenced_regs() that adds registers
1065 : : present in the insn and in equivalent mems and addresses to
1066 : : referenced_regs. */
1067 : :
1068 : : static void
1069 : 0 : mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1070 : : machine_mode mode,
1071 : : int hardregno,
1072 : : void *arg ATTRIBUTE_UNUSED)
1073 : : {
1074 : 0 : add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1075 : 0 : }
1076 : :
1077 : : /* Parameter function for mark_referenced_regs() that replaces
1078 : : registers referenced in a debug_insn that would have been restored,
1079 : : should it be a non-debug_insn, with their save locations. */
1080 : :
1081 : : static void
1082 : 0 : replace_reg_with_saved_mem (rtx *loc,
1083 : : machine_mode mode,
1084 : : int regno,
1085 : : void *arg)
1086 : : {
1087 : 0 : unsigned int i, nregs = hard_regno_nregs (regno, mode);
1088 : 0 : rtx mem;
1089 : 0 : machine_mode *save_mode = (machine_mode *)arg;
1090 : :
1091 : 0 : for (i = 0; i < nregs; i++)
1092 : 0 : if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1093 : : break;
1094 : :
1095 : : /* If none of the registers in the range would need restoring, we're
1096 : : all set. */
1097 : 0 : if (i == nregs)
1098 : : return;
1099 : :
1100 : 0 : while (++i < nregs)
1101 : 0 : if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1102 : : break;
1103 : :
1104 : 0 : if (i == nregs
1105 : 0 : && regno_save_mem[regno][nregs])
1106 : : {
1107 : 0 : mem = copy_rtx (regno_save_mem[regno][nregs]);
1108 : :
1109 : 0 : if (nregs == hard_regno_nregs (regno, save_mode[regno]))
1110 : 0 : mem = adjust_address_nv (mem, save_mode[regno], 0);
1111 : :
1112 : 0 : if (GET_MODE (mem) != mode)
1113 : : {
1114 : : /* This is gen_lowpart_if_possible(), but without validating
1115 : : the newly-formed address. */
1116 : 0 : poly_int64 offset = byte_lowpart_offset (mode, GET_MODE (mem));
1117 : 0 : mem = adjust_address_nv (mem, mode, offset);
1118 : : }
1119 : : }
1120 : : else
1121 : : {
1122 : 0 : mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1123 : 0 : for (i = 0; i < nregs; i++)
1124 : 0 : if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1125 : : {
1126 : 0 : gcc_assert (regno_save_mem[regno + i][1]);
1127 : 0 : XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1128 : : }
1129 : : else
1130 : : {
1131 : 0 : machine_mode smode = save_mode[regno];
1132 : 0 : gcc_assert (smode != VOIDmode);
1133 : 0 : if (hard_regno_nregs (regno, smode) > 1)
1134 : 0 : smode = mode_for_size (exact_div (GET_MODE_BITSIZE (mode),
1135 : : nregs),
1136 : 0 : GET_MODE_CLASS (mode), 0).require ();
1137 : 0 : XVECEXP (mem, 0, i) = gen_rtx_REG (smode, regno + i);
1138 : : }
1139 : : }
1140 : :
1141 : 0 : gcc_assert (GET_MODE (mem) == mode);
1142 : 0 : *loc = mem;
1143 : : }
1144 : :
1145 : :
1146 : : /* Insert a sequence of insns to restore. Place these insns in front of
1147 : : CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1148 : : the maximum number of registers which should be restored during this call.
1149 : : It should never be less than 1 since we only work with entire registers.
1150 : :
1151 : : Note that we have verified in init_caller_save that we can do this
1152 : : with a simple SET, so use it. Set INSN_CODE to what we save there
1153 : : since the address might not be valid so the insn might not be recognized.
1154 : : These insns will be reloaded and have register elimination done by
1155 : : find_reload, so we need not worry about that here.
1156 : :
1157 : : Return the extra number of registers saved. */
1158 : :
1159 : : static int
1160 : 0 : insert_restore (class insn_chain *chain, int before_p, int regno,
1161 : : int maxrestore, machine_mode *save_mode)
1162 : : {
1163 : 0 : int i, k;
1164 : 0 : rtx pat = NULL_RTX;
1165 : 0 : int code;
1166 : 0 : unsigned int numregs = 0;
1167 : 0 : class insn_chain *new_chain;
1168 : 0 : rtx mem;
1169 : :
1170 : : /* A common failure mode if register status is not correct in the
1171 : : RTL is for this routine to be called with a REGNO we didn't
1172 : : expect to save. That will cause us to write an insn with a (nil)
1173 : : SET_DEST or SET_SRC. Instead of doing so and causing a crash
1174 : : later, check for this common case here instead. This will remove
1175 : : one step in debugging such problems. */
1176 : 0 : gcc_assert (regno_save_mem[regno][1]);
1177 : :
1178 : : /* Get the pattern to emit and update our status.
1179 : :
1180 : : See if we can restore `maxrestore' registers at once. Work
1181 : : backwards to the single register case. */
1182 : 0 : for (i = maxrestore; i > 0; i--)
1183 : : {
1184 : 0 : int j;
1185 : 0 : int ok = 1;
1186 : :
1187 : 0 : if (regno_save_mem[regno][i] == 0)
1188 : 0 : continue;
1189 : :
1190 : 0 : for (j = 0; j < i; j++)
1191 : 0 : if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1192 : : {
1193 : : ok = 0;
1194 : : break;
1195 : : }
1196 : : /* Must do this one restore at a time. */
1197 : 0 : if (! ok)
1198 : 0 : continue;
1199 : :
1200 : 0 : numregs = i;
1201 : 0 : break;
1202 : : }
1203 : :
1204 : 0 : mem = regno_save_mem [regno][numregs];
1205 : 0 : if (save_mode [regno] != VOIDmode
1206 : 0 : && save_mode [regno] != GET_MODE (mem)
1207 : 0 : && numregs == hard_regno_nregs (regno, save_mode [regno])
1208 : : /* Check that insn to restore REGNO in save_mode[regno] is
1209 : : correct. */
1210 : 0 : && reg_save_code (regno, save_mode[regno]) >= 0)
1211 : 0 : mem = adjust_address_nv (mem, save_mode[regno], 0);
1212 : : else
1213 : 0 : mem = copy_rtx (mem);
1214 : :
1215 : : /* Verify that the alignment of spill space is equal to or greater
1216 : : than required. */
1217 : 0 : gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1218 : : GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1219 : :
1220 : 0 : pat = gen_rtx_SET (gen_rtx_REG (GET_MODE (mem), regno), mem);
1221 : 0 : code = reg_restore_code (regno, GET_MODE (mem));
1222 : 0 : new_chain = insert_one_insn (chain, before_p, code, pat);
1223 : :
1224 : : /* Clear status for all registers we restored. */
1225 : 0 : for (k = 0; k < i; k++)
1226 : : {
1227 : 0 : CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1228 : 0 : SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1229 : 0 : n_regs_saved--;
1230 : : }
1231 : :
1232 : : /* Tell our callers how many extra registers we saved/restored. */
1233 : 0 : return numregs - 1;
1234 : : }
1235 : :
1236 : : /* Like insert_restore above, but save registers instead. */
1237 : :
1238 : : static int
1239 : 0 : insert_save (class insn_chain *chain, int regno,
1240 : : HARD_REG_SET *to_save, machine_mode *save_mode)
1241 : : {
1242 : 0 : int i;
1243 : 0 : unsigned int k;
1244 : 0 : rtx pat = NULL_RTX;
1245 : 0 : int code;
1246 : 0 : unsigned int numregs = 0;
1247 : 0 : class insn_chain *new_chain;
1248 : 0 : rtx mem;
1249 : :
1250 : : /* A common failure mode if register status is not correct in the
1251 : : RTL is for this routine to be called with a REGNO we didn't
1252 : : expect to save. That will cause us to write an insn with a (nil)
1253 : : SET_DEST or SET_SRC. Instead of doing so and causing a crash
1254 : : later, check for this common case here. This will remove one
1255 : : step in debugging such problems. */
1256 : 0 : gcc_assert (regno_save_mem[regno][1]);
1257 : :
1258 : : /* Get the pattern to emit and update our status.
1259 : :
1260 : : See if we can save several registers with a single instruction.
1261 : : Work backwards to the single register case. */
1262 : 0 : for (i = MOVE_MAX_WORDS; i > 0; i--)
1263 : : {
1264 : 0 : int j;
1265 : 0 : int ok = 1;
1266 : 0 : if (regno_save_mem[regno][i] == 0)
1267 : 0 : continue;
1268 : :
1269 : 0 : for (j = 0; j < i; j++)
1270 : 0 : if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1271 : : {
1272 : : ok = 0;
1273 : : break;
1274 : : }
1275 : : /* Must do this one save at a time. */
1276 : 0 : if (! ok)
1277 : 0 : continue;
1278 : :
1279 : 0 : numregs = i;
1280 : 0 : break;
1281 : : }
1282 : :
1283 : 0 : mem = regno_save_mem [regno][numregs];
1284 : 0 : if (save_mode [regno] != VOIDmode
1285 : 0 : && save_mode [regno] != GET_MODE (mem)
1286 : 0 : && numregs == hard_regno_nregs (regno, save_mode [regno])
1287 : : /* Check that insn to save REGNO in save_mode[regno] is
1288 : : correct. */
1289 : 0 : && reg_save_code (regno, save_mode[regno]) >= 0)
1290 : 0 : mem = adjust_address_nv (mem, save_mode[regno], 0);
1291 : : else
1292 : 0 : mem = copy_rtx (mem);
1293 : :
1294 : : /* Verify that the alignment of spill space is equal to or greater
1295 : : than required. */
1296 : 0 : gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1297 : : GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1298 : :
1299 : 0 : pat = gen_rtx_SET (mem, gen_rtx_REG (GET_MODE (mem), regno));
1300 : 0 : code = reg_save_code (regno, GET_MODE (mem));
1301 : 0 : new_chain = insert_one_insn (chain, 1, code, pat);
1302 : :
1303 : : /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1304 : 0 : for (k = 0; k < numregs; k++)
1305 : : {
1306 : 0 : SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1307 : 0 : SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1308 : 0 : n_regs_saved++;
1309 : : }
1310 : :
1311 : : /* Tell our callers how many extra registers we saved/restored. */
1312 : 0 : return numregs - 1;
1313 : : }
1314 : :
1315 : : /* A note_uses callback used by insert_one_insn. Add the hard-register
1316 : : equivalent of each REG to regset DATA. */
1317 : :
1318 : : static void
1319 : 0 : add_used_regs (rtx *loc, void *data)
1320 : : {
1321 : 0 : subrtx_iterator::array_type array;
1322 : 0 : FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
1323 : : {
1324 : 0 : const_rtx x = *iter;
1325 : 0 : if (REG_P (x))
1326 : : {
1327 : 0 : unsigned int regno = REGNO (x);
1328 : 0 : if (HARD_REGISTER_NUM_P (regno))
1329 : 0 : bitmap_set_range ((regset) data, regno, REG_NREGS (x));
1330 : : else
1331 : 0 : gcc_checking_assert (reg_renumber[regno] < 0);
1332 : : }
1333 : : }
1334 : 0 : }
1335 : :
1336 : : /* Emit a new caller-save insn and set the code. */
1337 : : static class insn_chain *
1338 : 0 : insert_one_insn (class insn_chain *chain, int before_p, int code, rtx pat)
1339 : : {
1340 : 0 : rtx_insn *insn = chain->insn;
1341 : 0 : class insn_chain *new_chain;
1342 : :
1343 : 0 : new_chain = new_insn_chain ();
1344 : 0 : if (before_p)
1345 : : {
1346 : 0 : rtx link;
1347 : :
1348 : 0 : new_chain->prev = chain->prev;
1349 : 0 : if (new_chain->prev != 0)
1350 : 0 : new_chain->prev->next = new_chain;
1351 : : else
1352 : 0 : reload_insn_chain = new_chain;
1353 : :
1354 : 0 : chain->prev = new_chain;
1355 : 0 : new_chain->next = chain;
1356 : 0 : new_chain->insn = emit_insn_before (pat, insn);
1357 : : /* ??? It would be nice if we could exclude the already / still saved
1358 : : registers from the live sets. */
1359 : 0 : COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1360 : 0 : note_uses (&PATTERN (chain->insn), add_used_regs,
1361 : : &new_chain->live_throughout);
1362 : : /* If CHAIN->INSN is a call, then the registers which contain
1363 : : the arguments to the function are live in the new insn. */
1364 : 0 : if (CALL_P (chain->insn))
1365 : 0 : for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1366 : 0 : link != NULL_RTX;
1367 : 0 : link = XEXP (link, 1))
1368 : 0 : note_uses (&XEXP (link, 0), add_used_regs,
1369 : : &new_chain->live_throughout);
1370 : :
1371 : 0 : CLEAR_REG_SET (&new_chain->dead_or_set);
1372 : 0 : if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1373 : 0 : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1374 : : }
1375 : : else
1376 : : {
1377 : 0 : new_chain->next = chain->next;
1378 : 0 : if (new_chain->next != 0)
1379 : 0 : new_chain->next->prev = new_chain;
1380 : 0 : chain->next = new_chain;
1381 : 0 : new_chain->prev = chain;
1382 : 0 : new_chain->insn = emit_insn_after (pat, insn);
1383 : : /* ??? It would be nice if we could exclude the already / still saved
1384 : : registers from the live sets, and observe REG_UNUSED notes. */
1385 : 0 : COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1386 : : /* Registers that are set in CHAIN->INSN live in the new insn.
1387 : : (Unless there is a REG_UNUSED note for them, but we don't
1388 : : look for them here.) */
1389 : 0 : note_stores (chain->insn, add_stored_regs, &new_chain->live_throughout);
1390 : 0 : CLEAR_REG_SET (&new_chain->dead_or_set);
1391 : 0 : if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1392 : 0 : BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1393 : : }
1394 : 0 : new_chain->block = chain->block;
1395 : 0 : new_chain->is_caller_save_insn = 1;
1396 : :
1397 : 0 : INSN_CODE (new_chain->insn) = code;
1398 : 0 : return new_chain;
1399 : : }
1400 : : #include "gt-caller-save.h"
|