Branch data Line data Source code
1 : : /* Allocation for dataflow support routines.
2 : : Copyright (C) 1999-2025 Free Software Foundation, Inc.
3 : : Originally contributed by Michael P. Hayes
4 : : (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 : : Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 : : and Kenneth Zadeck (zadeck@naturalbridge.com).
7 : :
8 : : This file is part of GCC.
9 : :
10 : : GCC is free software; you can redistribute it and/or modify it under
11 : : the terms of the GNU General Public License as published by the Free
12 : : Software Foundation; either version 3, or (at your option) any later
13 : : version.
14 : :
15 : : GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 : : WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 : : FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 : : for more details.
19 : :
20 : : You should have received a copy of the GNU General Public License
21 : : along with GCC; see the file COPYING3. If not see
22 : : <http://www.gnu.org/licenses/>. */
23 : :
24 : : /*
25 : : OVERVIEW:
26 : :
27 : : The files in this collection (df*.c,df.h) provide a general framework
28 : : for solving dataflow problems. The global dataflow is performed using
29 : : a good implementation of iterative dataflow analysis.
30 : :
31 : : The file df-problems.cc provides problem instance for the most common
32 : : dataflow problems: reaching defs, upward exposed uses, live variables,
33 : : uninitialized variables, def-use chains, and use-def chains. However,
34 : : the interface allows other dataflow problems to be defined as well.
35 : :
36 : : Dataflow analysis is available in most of the rtl backend (the parts
37 : : between pass_df_initialize and pass_df_finish). It is quite likely
38 : : that these boundaries will be expanded in the future. The only
39 : : requirement is that there be a correct control flow graph.
40 : :
41 : : There are three variations of the live variable problem that are
42 : : available whenever dataflow is available. The LR problem finds the
43 : : areas that can reach a use of a variable, the UR problems finds the
44 : : areas that can be reached from a definition of a variable. The LIVE
45 : : problem finds the intersection of these two areas.
46 : :
47 : : There are several optional problems. These can be enabled when they
48 : : are needed and disabled when they are not needed.
49 : :
50 : : Dataflow problems are generally solved in three layers. The bottom
51 : : layer is called scanning where a data structure is built for each rtl
52 : : insn that describes the set of defs and uses of that insn. Scanning
53 : : is generally kept up to date, i.e. as the insns changes, the scanned
54 : : version of that insn changes also. There are various mechanisms for
55 : : making this happen and are described in the INCREMENTAL SCANNING
56 : : section.
57 : :
58 : : In the middle layer, basic blocks are scanned to produce transfer
59 : : functions which describe the effects of that block on the global
60 : : dataflow solution. The transfer functions are only rebuilt if the
61 : : some instruction within the block has changed.
62 : :
63 : : The top layer is the dataflow solution itself. The dataflow solution
64 : : is computed by using an efficient iterative solver and the transfer
65 : : functions. The dataflow solution must be recomputed whenever the
66 : : control changes or if one of the transfer function changes.
67 : :
68 : :
69 : : USAGE:
70 : :
71 : : Here is an example of using the dataflow routines.
72 : :
73 : : df_[chain,live,note,rd]_add_problem (flags);
74 : :
75 : : df_set_blocks (blocks);
76 : :
77 : : df_analyze ();
78 : :
79 : : df_dump (stderr);
80 : :
81 : : df_finish_pass (false);
82 : :
83 : : DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 : : instance to struct df_problem, to the set of problems solved in this
85 : : instance of df. All calls to add a problem for a given instance of df
86 : : must occur before the first call to DF_ANALYZE.
87 : :
88 : : Problems can be dependent on other problems. For instance, solving
89 : : def-use or use-def chains is dependent on solving reaching
90 : : definitions. As long as these dependencies are listed in the problem
91 : : definition, the order of adding the problems is not material.
92 : : Otherwise, the problems will be solved in the order of calls to
93 : : df_add_problem. Note that it is not necessary to have a problem. In
94 : : that case, df will just be used to do the scanning.
95 : :
96 : :
97 : :
98 : : DF_SET_BLOCKS is an optional call used to define a region of the
99 : : function on which the analysis will be performed. The normal case is
100 : : to analyze the entire function and no call to df_set_blocks is made.
101 : : DF_SET_BLOCKS only effects the blocks that are effected when computing
102 : : the transfer functions and final solution. The insn level information
103 : : is always kept up to date.
104 : :
105 : : When a subset is given, the analysis behaves as if the function only
106 : : contains those blocks and any edges that occur directly between the
107 : : blocks in the set. Care should be taken to call df_set_blocks right
108 : : before the call to analyze in order to eliminate the possibility that
109 : : optimizations that reorder blocks invalidate the bitvector.
110 : :
111 : : DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 : : DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 : : contain the computer information. The DF_*_BB_INFO macros can be used
114 : : to access these bitvectors. All deferred rescannings are down before
115 : : the transfer functions are recomputed.
116 : :
117 : : DF_DUMP can then be called to dump the information produce to some
118 : : file. This calls DF_DUMP_START, to print the information that is not
119 : : basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 : : for each block to print the basic specific information. These parts
121 : : can all be called separately as part of a larger dump function.
122 : :
123 : :
124 : : DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 : : optional problems. It also causes any insns whose scanning has been
126 : : deferred to be rescanned as well as clears all of the changeable flags.
127 : : Setting the pass manager TODO_df_finish flag causes this function to
128 : : be run. However, the pass manager will call df_finish_pass AFTER the
129 : : pass dumping has been done, so if you want to see the results of the
130 : : optional problems in the pass dumps, use the TODO flag rather than
131 : : calling the function yourself.
132 : :
133 : : INCREMENTAL SCANNING
134 : :
135 : : There are four ways of doing the incremental scanning:
136 : :
137 : : 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 : : df_bb_delete, df_insn_change_bb have been added to most of
139 : : the low level service functions that maintain the cfg and change
140 : : rtl. Calling and of these routines many cause some number of insns
141 : : to be rescanned.
142 : :
143 : : For most modern rtl passes, this is certainly the easiest way to
144 : : manage rescanning the insns. This technique also has the advantage
145 : : that the scanning information is always correct and can be relied
146 : : upon even after changes have been made to the instructions. This
147 : : technique is contra indicated in several cases:
148 : :
149 : : a) If def-use chains OR use-def chains (but not both) are built,
150 : : using this is SIMPLY WRONG. The problem is that when a ref is
151 : : deleted that is the target of an edge, there is not enough
152 : : information to efficiently find the source of the edge and
153 : : delete the edge. This leaves a dangling reference that may
154 : : cause problems.
155 : :
156 : : b) If def-use chains AND use-def chains are built, this may
157 : : produce unexpected results. The problem is that the incremental
158 : : scanning of an insn does not know how to repair the chains that
159 : : point into an insn when the insn changes. So the incremental
160 : : scanning just deletes the chains that enter and exit the insn
161 : : being changed. The dangling reference issue in (a) is not a
162 : : problem here, but if the pass is depending on the chains being
163 : : maintained after insns have been modified, this technique will
164 : : not do the correct thing.
165 : :
166 : : c) If the pass modifies insns several times, this incremental
167 : : updating may be expensive.
168 : :
169 : : d) If the pass modifies all of the insns, as does register
170 : : allocation, it is simply better to rescan the entire function.
171 : :
172 : : 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 : : df_insn_delete do not immediately change the insn but instead make
174 : : a note that the insn needs to be rescanned. The next call to
175 : : df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 : : cause all of the pending rescans to be processed.
177 : :
178 : : This is the technique of choice if either 1a, 1b, or 1c are issues
179 : : in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 : : (either manually or via TODO_df_finish) should be made before the
181 : : next call to df_analyze or df_process_deferred_rescans.
182 : :
183 : : This mode is also used by a few passes that still rely on note_uses,
184 : : note_stores and rtx iterators instead of using the DF data. This
185 : : can be said to fall under case 1c.
186 : :
187 : : To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 : : (This mode can be cleared by calling df_clear_flags
189 : : (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 : : be rescanned.
191 : :
192 : : 3) Total rescanning - In this mode the rescanning is disabled.
193 : : Only when insns are deleted is the df information associated with
194 : : it also deleted. At the end of the pass, a call must be made to
195 : : df_insn_rescan_all. This method is used by the register allocator
196 : : since it generally changes each insn multiple times (once for each ref)
197 : : and does not need to make use of the updated scanning information.
198 : :
199 : : 4) Do it yourself - In this mechanism, the pass updates the insns
200 : : itself using the low level df primitives. Currently no pass does
201 : : this, but it has the advantage that it is quite efficient given
202 : : that the pass generally has exact knowledge of what it is changing.
203 : :
204 : : DATA STRUCTURES
205 : :
206 : : Scanning produces a `struct df_ref' data structure (ref) is allocated
207 : : for every register reference (def or use) and this records the insn
208 : : and bb the ref is found within. The refs are linked together in
209 : : chains of uses and defs for each insn and for each register. Each ref
210 : : also has a chain field that links all the use refs for a def or all
211 : : the def refs for a use. This is used to create use-def or def-use
212 : : chains.
213 : :
214 : : Different optimizations have different needs. Ultimately, only
215 : : register allocation and schedulers should be using the bitmaps
216 : : produced for the live register and uninitialized register problems.
217 : : The rest of the backend should be upgraded to using and maintaining
218 : : the linked information such as def use or use def chains.
219 : :
220 : :
221 : : PHILOSOPHY:
222 : :
223 : : While incremental bitmaps are not worthwhile to maintain, incremental
224 : : chains may be perfectly reasonable. The fastest way to build chains
225 : : from scratch or after significant modifications is to build reaching
226 : : definitions (RD) and build the chains from this.
227 : :
228 : : However, general algorithms for maintaining use-def or def-use chains
229 : : are not practical. The amount of work to recompute the chain any
230 : : chain after an arbitrary change is large. However, with a modest
231 : : amount of work it is generally possible to have the application that
232 : : uses the chains keep them up to date. The high level knowledge of
233 : : what is really happening is essential to crafting efficient
234 : : incremental algorithms.
235 : :
236 : : As for the bit vector problems, there is no interface to give a set of
237 : : blocks over with to resolve the iteration. In general, restarting a
238 : : dataflow iteration is difficult and expensive. Again, the best way to
239 : : keep the dataflow information up to data (if this is really what is
240 : : needed) it to formulate a problem specific solution.
241 : :
242 : : There are fine grained calls for creating and deleting references from
243 : : instructions in df-scan.cc. However, these are not currently connected
244 : : to the engine that resolves the dataflow equations.
245 : :
246 : :
247 : : DATA STRUCTURES:
248 : :
249 : : The basic object is a DF_REF (reference) and this may either be a
250 : : DEF (definition) or a USE of a register.
251 : :
252 : : These are linked into a variety of lists; namely reg-def, reg-use,
253 : : insn-def, insn-use, def-use, and use-def lists. For example, the
254 : : reg-def lists contain all the locations that define a given register
255 : : while the insn-use lists contain all the locations that use a
256 : : register.
257 : :
258 : : Note that the reg-def and reg-use chains are generally short for
259 : : pseudos and long for the hard registers.
260 : :
261 : : ACCESSING INSNS:
262 : :
263 : : 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 : : The array is indexed by insn uid, and every DF_REF points to the
265 : : DF_INSN_INFO object of the insn that contains the reference.
266 : :
267 : : 2) Each insn has three sets of refs, which are linked into one of three
268 : : lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 : : DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 : : (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 : : DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 : : DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 : : The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 : : notes. These macros produce a ref (or NULL), the rest of the list
275 : : can be obtained by traversal of the NEXT_REF field (accessed by the
276 : : DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 : : the uses or refs in an instruction.
278 : :
279 : : 3) Each insn has a logical uid field (LUID) which is stored in the
280 : : DF_INSN_INFO object for the insn. The LUID field is accessed by
281 : : the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 : : When properly set, the LUID is an integer that numbers each insn in
283 : : the basic block, in order from the start of the block.
284 : : The numbers are only correct after a call to df_analyze. They will
285 : : rot after insns are added deleted or moved round.
286 : :
287 : : ACCESSING REFS:
288 : :
289 : : There are 4 ways to obtain access to refs:
290 : :
291 : : 1) References are divided into two categories, REAL and ARTIFICIAL.
292 : :
293 : : REAL refs are associated with instructions.
294 : :
295 : : ARTIFICIAL refs are associated with basic blocks. The heads of
296 : : these lists can be accessed by calling df_get_artificial_defs or
297 : : df_get_artificial_uses for the particular basic block.
298 : :
299 : : Artificial defs and uses occur both at the beginning and ends of blocks.
300 : :
301 : : For blocks that are at the destination of eh edges, the
302 : : artificial uses and defs occur at the beginning. The defs relate
303 : : to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 : : relate to the registers specified in EH_USES. Logically these
305 : : defs and uses should really occur along the eh edge, but there is
306 : : no convenient way to do this. Artificial defs that occur at the
307 : : beginning of the block have the DF_REF_AT_TOP flag set.
308 : :
309 : : Artificial uses occur at the end of all blocks. These arise from
310 : : the hard registers that are always live, such as the stack
311 : : register and are put there to keep the code from forgetting about
312 : : them.
313 : :
314 : : Artificial defs occur at the end of the entry block. These arise
315 : : from registers that are live at entry to the function.
316 : :
317 : : 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 : : uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319 : :
320 : : All of the eq_uses, uses and defs associated with each pseudo or
321 : : hard register may be linked in a bidirectional chain. These are
322 : : called reg-use or reg_def chains. If the changeable flag
323 : : DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 : : treated like uses. If it is not set they are ignored.
325 : :
326 : : The first use, eq_use or def for a register can be obtained using
327 : : the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 : : macros. Subsequent uses for the same regno can be obtained by
329 : : following the next_reg field of the ref. The number of elements in
330 : : each of the chains can be found by using the DF_REG_USE_COUNT,
331 : : DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332 : :
333 : : In previous versions of this code, these chains were ordered. It
334 : : has not been practical to continue this practice.
335 : :
336 : : 3) If def-use or use-def chains are built, these can be traversed to
337 : : get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 : : include the eq_uses. Otherwise these are ignored when building the
339 : : chains.
340 : :
341 : : 4) An array of all of the uses (and an array of all of the defs) can
342 : : be built. These arrays are indexed by the value in the id
343 : : structure. These arrays are only lazily kept up to date, and that
344 : : process can be expensive. To have these arrays built, call
345 : : df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 : : has been set the array will contain the eq_uses. Otherwise these
347 : : are ignored when building the array and assigning the ids. Note
348 : : that the values in the id field of a ref may change across calls to
349 : : df_analyze or df_reorganize_defs or df_reorganize_uses.
350 : :
351 : : If the only use of this array is to find all of the refs, it is
352 : : better to traverse all of the registers and then traverse all of
353 : : reg-use or reg-def chains.
354 : :
355 : : NOTES:
356 : :
357 : : Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 : : both a use and a def. These are both marked read/write to show that they
359 : : are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 : : will generate a use of reg 42 followed by a def of reg 42 (both marked
361 : : read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 : : generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 : : even though reg 41 is decremented before it is used for the memory
364 : : address in this second example.
365 : :
366 : : A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 : : for which the number of word_mode units covered by the outer mode is
368 : : smaller than that covered by the inner mode, invokes a read-modify-write
369 : : operation. We generate both a use and a def and again mark them
370 : : read/write.
371 : :
372 : : Paradoxical subreg writes do not leave a trace of the old content, so they
373 : : are write-only operations.
374 : : */
375 : :
376 : :
377 : : #include "config.h"
378 : : #include "system.h"
379 : : #include "coretypes.h"
380 : : #include "backend.h"
381 : : #include "rtl.h"
382 : : #include "df.h"
383 : : #include "memmodel.h"
384 : : #include "emit-rtl.h"
385 : : #include "cfganal.h"
386 : : #include "tree-pass.h"
387 : : #include "cfgloop.h"
388 : :
389 : : static void *df_get_bb_info (struct dataflow *, unsigned int);
390 : : static void df_set_bb_info (struct dataflow *, unsigned int, void *);
391 : : static void df_clear_bb_info (struct dataflow *, unsigned int);
392 : : #ifdef DF_DEBUG_CFG
393 : : static void df_set_clean_cfg (void);
394 : : #endif
395 : :
396 : : /* The obstack on which regsets are allocated. */
397 : : struct bitmap_obstack reg_obstack;
398 : :
399 : : /* An obstack for bitmap not related to specific dataflow problems.
400 : : This obstack should e.g. be used for bitmaps with a short life time
401 : : such as temporary bitmaps. */
402 : :
403 : : bitmap_obstack df_bitmap_obstack;
404 : :
405 : :
406 : : /*----------------------------------------------------------------------------
407 : : Functions to create, destroy and manipulate an instance of df.
408 : : ----------------------------------------------------------------------------*/
409 : :
410 : : class df_d *df;
411 : :
412 : : /* Add PROBLEM (and any dependent problems) to the DF instance. */
413 : :
414 : : void
415 : 46636996 : df_add_problem (const struct df_problem *problem)
416 : : {
417 : 46636996 : struct dataflow *dflow;
418 : 46636996 : int i;
419 : :
420 : : /* First try to add the dependent problem. */
421 : 46636996 : if (problem->dependent_problem)
422 : 22029502 : df_add_problem (problem->dependent_problem);
423 : :
424 : : /* Check to see if this problem has already been defined. If it
425 : : has, just return that instance, if not, add it to the end of the
426 : : vector. */
427 : 46636996 : dflow = df->problems_by_index[problem->id];
428 : 46636996 : if (dflow)
429 : : return;
430 : :
431 : : /* Make a new one and add it to the end. */
432 : 30033694 : dflow = XCNEW (struct dataflow);
433 : 30033694 : dflow->problem = problem;
434 : 30033694 : dflow->computed = false;
435 : 30033694 : dflow->solutions_dirty = true;
436 : 30033694 : df->problems_by_index[dflow->problem->id] = dflow;
437 : :
438 : : /* Keep the defined problems ordered by index. This solves the
439 : : problem that RI will use the information from UREC if UREC has
440 : : been defined, or from LIVE if LIVE is defined and otherwise LR.
441 : : However for this to work, the computation of RI must be pushed
442 : : after which ever of those problems is defined, but we do not
443 : : require any of those except for LR to have actually been
444 : : defined. */
445 : 30033694 : df->num_problems_defined++;
446 : 30488718 : for (i = df->num_problems_defined - 2; i >= 0; i--)
447 : : {
448 : 29023832 : if (problem->id < df->problems_in_order[i]->problem->id)
449 : 455024 : df->problems_in_order[i+1] = df->problems_in_order[i];
450 : : else
451 : : {
452 : 28568808 : df->problems_in_order[i+1] = dflow;
453 : 28568808 : return;
454 : : }
455 : : }
456 : 1464886 : df->problems_in_order[0] = dflow;
457 : : }
458 : :
459 : :
460 : : /* Set the MASK flags in the DFLOW problem. The old flags are
461 : : returned. If a flag is not allowed to be changed this will fail if
462 : : checking is enabled. */
463 : : int
464 : 49563181 : df_set_flags (int changeable_flags)
465 : : {
466 : 49563181 : int old_flags = df->changeable_flags;
467 : 49563181 : df->changeable_flags |= changeable_flags;
468 : 49563181 : return old_flags;
469 : : }
470 : :
471 : :
472 : : /* Clear the MASK flags in the DFLOW problem. The old flags are
473 : : returned. If a flag is not allowed to be changed this will fail if
474 : : checking is enabled. */
475 : : int
476 : 27932375 : df_clear_flags (int changeable_flags)
477 : : {
478 : 27932375 : int old_flags = df->changeable_flags;
479 : 27932375 : df->changeable_flags &= ~changeable_flags;
480 : 27932375 : return old_flags;
481 : : }
482 : :
483 : :
484 : : /* Set the blocks that are to be considered for analysis. If this is
485 : : not called or is called with null, the entire function in
486 : : analyzed. */
487 : :
488 : : void
489 : 1302272 : df_set_blocks (bitmap blocks)
490 : : {
491 : 1302272 : if (blocks)
492 : : {
493 : 1302272 : if (dump_file)
494 : 195 : bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
495 : 1302272 : if (df->blocks_to_analyze)
496 : : {
497 : : /* This block is called to change the focus from one subset
498 : : to another. */
499 : 906673 : int p;
500 : 906673 : auto_bitmap diff (&df_bitmap_obstack);
501 : 906673 : bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
502 : 6801140 : for (p = 0; p < df->num_problems_defined; p++)
503 : : {
504 : 5894467 : struct dataflow *dflow = df->problems_in_order[p];
505 : 5894467 : if (dflow->optional_p && dflow->problem->reset_fun)
506 : 29373 : dflow->problem->reset_fun (df->blocks_to_analyze);
507 : 5865094 : else if (dflow->problem->free_blocks_on_set_blocks)
508 : : {
509 : 906673 : bitmap_iterator bi;
510 : 906673 : unsigned int bb_index;
511 : :
512 : 4379910 : EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
513 : : {
514 : 3473237 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
515 : 3473237 : if (bb)
516 : : {
517 : 6946474 : void *bb_info = df_get_bb_info (dflow, bb_index);
518 : 3473237 : dflow->problem->free_bb_fun (bb, bb_info);
519 : 3473237 : df_clear_bb_info (dflow, bb_index);
520 : : }
521 : : }
522 : : }
523 : : }
524 : 906673 : }
525 : : else
526 : : {
527 : : /* This block of code is executed to change the focus from
528 : : the entire function to a subset. */
529 : 395599 : bitmap_head blocks_to_reset;
530 : 395599 : bool initialized = false;
531 : 395599 : int p;
532 : 2956318 : for (p = 0; p < df->num_problems_defined; p++)
533 : : {
534 : 2560719 : struct dataflow *dflow = df->problems_in_order[p];
535 : 2560719 : if (dflow->optional_p && dflow->problem->reset_fun)
536 : : {
537 : 0 : if (!initialized)
538 : : {
539 : 0 : basic_block bb;
540 : 0 : bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
541 : 0 : FOR_ALL_BB_FN (bb, cfun)
542 : : {
543 : 0 : bitmap_set_bit (&blocks_to_reset, bb->index);
544 : : }
545 : : }
546 : 0 : dflow->problem->reset_fun (&blocks_to_reset);
547 : : }
548 : : }
549 : 395599 : if (initialized)
550 : : bitmap_clear (&blocks_to_reset);
551 : :
552 : 395599 : df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
553 : : }
554 : 1302272 : bitmap_copy (df->blocks_to_analyze, blocks);
555 : 1302272 : df->analyze_subset = true;
556 : : }
557 : : else
558 : : {
559 : : /* This block is executed to reset the focus to the entire
560 : : function. */
561 : 0 : if (dump_file)
562 : 0 : fprintf (dump_file, "clearing blocks_to_analyze\n");
563 : 0 : if (df->blocks_to_analyze)
564 : : {
565 : 0 : BITMAP_FREE (df->blocks_to_analyze);
566 : 0 : df->blocks_to_analyze = NULL;
567 : : }
568 : 0 : df->analyze_subset = false;
569 : : }
570 : :
571 : : /* Setting the blocks causes the refs to be unorganized since only
572 : : the refs in the blocks are seen. */
573 : 1302272 : df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 : 1302272 : df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 : 1302272 : df_mark_solutions_dirty ();
576 : 1302272 : }
577 : :
578 : :
579 : : /* Delete a DFLOW problem (and any problems that depend on this
580 : : problem). */
581 : :
582 : : void
583 : 24866627 : df_remove_problem (struct dataflow *dflow)
584 : : {
585 : 24866627 : const struct df_problem *problem;
586 : 24866627 : int i;
587 : :
588 : 24866627 : if (!dflow)
589 : : return;
590 : :
591 : 24679388 : problem = dflow->problem;
592 : 24679388 : gcc_assert (problem->remove_problem_fun);
593 : :
594 : : /* Delete any problems that depended on this problem first. */
595 : 157249349 : for (i = 0; i < df->num_problems_defined; i++)
596 : 132569961 : if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 : 3911176 : df_remove_problem (df->problems_in_order[i]);
598 : :
599 : : /* Now remove this problem. */
600 : 126084039 : for (i = 0; i < df->num_problems_defined; i++)
601 : 126084039 : if (df->problems_in_order[i] == dflow)
602 : : {
603 : 24679388 : int j;
604 : 28401125 : for (j = i + 1; j < df->num_problems_defined; j++)
605 : 3721737 : df->problems_in_order[j-1] = df->problems_in_order[j];
606 : 24679388 : df->problems_in_order[j-1] = NULL;
607 : 24679388 : df->num_problems_defined--;
608 : 24679388 : break;
609 : : }
610 : :
611 : 24679388 : (problem->remove_problem_fun) ();
612 : 24679388 : df->problems_by_index[problem->id] = NULL;
613 : : }
614 : :
615 : :
616 : : /* Remove all of the problems that are not permanent. Scanning, LR
617 : : and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 : : Also clear all of the changeable_flags. */
619 : :
620 : : void
621 : 38695389 : df_finish_pass (bool verify ATTRIBUTE_UNUSED)
622 : : {
623 : 38695389 : int i;
624 : :
625 : : #ifdef ENABLE_DF_CHECKING
626 : : int saved_flags;
627 : : #endif
628 : :
629 : 38695389 : if (!df)
630 : : return;
631 : :
632 : 38695388 : df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 : 38695388 : df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634 : :
635 : : #ifdef ENABLE_DF_CHECKING
636 : : saved_flags = df->changeable_flags;
637 : : #endif
638 : :
639 : : /* We iterate over problems by index as each problem removed will
640 : : lead to problems_in_order to be reordered. */
641 : 425649268 : for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
642 : : {
643 : 386953880 : struct dataflow *dflow = df->problems_by_index[i];
644 : :
645 : 386953880 : if (dflow && dflow->optional_p)
646 : 17349660 : df_remove_problem (dflow);
647 : : }
648 : :
649 : : /* Clear all of the flags. */
650 : 38695388 : df->changeable_flags = 0;
651 : 38695388 : df_process_deferred_rescans ();
652 : :
653 : : /* Set the focus back to the whole function. */
654 : 38695388 : if (df->blocks_to_analyze)
655 : : {
656 : 395599 : BITMAP_FREE (df->blocks_to_analyze);
657 : 395599 : df->blocks_to_analyze = NULL;
658 : 395599 : df_mark_solutions_dirty ();
659 : 395599 : df->analyze_subset = false;
660 : : }
661 : :
662 : : #ifdef ENABLE_DF_CHECKING
663 : : /* Verification will fail in DF_NO_INSN_RESCAN. */
664 : : if (!(saved_flags & DF_NO_INSN_RESCAN))
665 : : {
666 : : df_lr_verify_transfer_functions ();
667 : : if (df_live)
668 : : df_live_verify_transfer_functions ();
669 : : }
670 : :
671 : : #ifdef DF_DEBUG_CFG
672 : : df_set_clean_cfg ();
673 : : #endif
674 : : #endif
675 : :
676 : 38695388 : if (flag_checking && verify)
677 : 5282509 : df->changeable_flags |= DF_VERIFY_SCHEDULED;
678 : : }
679 : :
680 : :
681 : : /* Set up the dataflow instance for the entire back end. */
682 : :
683 : : static unsigned int
684 : 1464886 : rest_of_handle_df_initialize (void)
685 : : {
686 : 1464886 : gcc_assert (!df);
687 : 1464886 : df = XCNEW (class df_d);
688 : 1464886 : df->changeable_flags = 0;
689 : :
690 : 1464886 : bitmap_obstack_initialize (&df_bitmap_obstack);
691 : :
692 : : /* Set this to a conservative value. Stack_ptr_mod will compute it
693 : : correctly later. */
694 : 1464886 : crtl->sp_is_unchanging = 0;
695 : :
696 : 1464886 : df_scan_add_problem ();
697 : 1464886 : df_scan_alloc (NULL);
698 : :
699 : : /* These three problems are permanent. */
700 : 1464886 : df_lr_add_problem ();
701 : 1464886 : if (optimize > 1)
702 : 959648 : df_live_add_problem ();
703 : :
704 : 1464886 : df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
705 : :
706 : 1464886 : df_hard_reg_init ();
707 : : /* After reload, some ports add certain bits to regs_ever_live so
708 : : this cannot be reset. */
709 : 1464886 : df_compute_regs_ever_live (true);
710 : 1464886 : df_scan_blocks ();
711 : 1464886 : df_compute_regs_ever_live (false);
712 : 1464886 : return 0;
713 : : }
714 : :
715 : :
716 : : namespace {
717 : :
718 : : const pass_data pass_data_df_initialize_opt =
719 : : {
720 : : RTL_PASS, /* type */
721 : : "dfinit", /* name */
722 : : OPTGROUP_NONE, /* optinfo_flags */
723 : : TV_DF_SCAN, /* tv_id */
724 : : 0, /* properties_required */
725 : : 0, /* properties_provided */
726 : : 0, /* properties_destroyed */
727 : : 0, /* todo_flags_start */
728 : : 0, /* todo_flags_finish */
729 : : };
730 : :
731 : : class pass_df_initialize_opt : public rtl_opt_pass
732 : : {
733 : : public:
734 : 281414 : pass_df_initialize_opt (gcc::context *ctxt)
735 : 562828 : : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
736 : : {}
737 : :
738 : : /* opt_pass methods: */
739 : 1464891 : bool gate (function *) final override { return optimize > 0; }
740 : 1035713 : unsigned int execute (function *) final override
741 : : {
742 : 1035713 : return rest_of_handle_df_initialize ();
743 : : }
744 : :
745 : : }; // class pass_df_initialize_opt
746 : :
747 : : } // anon namespace
748 : :
749 : : rtl_opt_pass *
750 : 281414 : make_pass_df_initialize_opt (gcc::context *ctxt)
751 : : {
752 : 281414 : return new pass_df_initialize_opt (ctxt);
753 : : }
754 : :
755 : :
756 : : namespace {
757 : :
758 : : const pass_data pass_data_df_initialize_no_opt =
759 : : {
760 : : RTL_PASS, /* type */
761 : : "no-opt dfinit", /* name */
762 : : OPTGROUP_NONE, /* optinfo_flags */
763 : : TV_DF_SCAN, /* tv_id */
764 : : 0, /* properties_required */
765 : : 0, /* properties_provided */
766 : : 0, /* properties_destroyed */
767 : : 0, /* todo_flags_start */
768 : : 0, /* todo_flags_finish */
769 : : };
770 : :
771 : : class pass_df_initialize_no_opt : public rtl_opt_pass
772 : : {
773 : : public:
774 : 281414 : pass_df_initialize_no_opt (gcc::context *ctxt)
775 : 562828 : : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
776 : : {}
777 : :
778 : : /* opt_pass methods: */
779 : 1464891 : bool gate (function *) final override { return optimize == 0; }
780 : 429173 : unsigned int execute (function *) final override
781 : : {
782 : 429173 : return rest_of_handle_df_initialize ();
783 : : }
784 : :
785 : : }; // class pass_df_initialize_no_opt
786 : :
787 : : } // anon namespace
788 : :
789 : : rtl_opt_pass *
790 : 281414 : make_pass_df_initialize_no_opt (gcc::context *ctxt)
791 : : {
792 : 281414 : return new pass_df_initialize_no_opt (ctxt);
793 : : }
794 : :
795 : :
796 : : /* Free all the dataflow info and the DF structure. This should be
797 : : called from the df_finish macro which also NULLs the parm. */
798 : :
799 : : static unsigned int
800 : 1464886 : rest_of_handle_df_finish (void)
801 : : {
802 : 1464886 : int i;
803 : :
804 : 1464886 : gcc_assert (df);
805 : :
806 : 6819192 : for (i = 0; i < df->num_problems_defined; i++)
807 : : {
808 : 5354306 : struct dataflow *dflow = df->problems_in_order[i];
809 : 5354306 : if (dflow->problem->free_fun)
810 : 3889420 : dflow->problem->free_fun ();
811 : : else
812 : 1464886 : free (dflow);
813 : : }
814 : :
815 : 1464886 : free (df->postorder);
816 : 1464886 : free (df->postorder_inverted);
817 : 1464886 : free (df->hard_regs_live_count);
818 : 1464886 : free (df);
819 : 1464886 : df = NULL;
820 : :
821 : 1464886 : bitmap_obstack_release (&df_bitmap_obstack);
822 : 1464886 : return 0;
823 : : }
824 : :
825 : :
826 : : namespace {
827 : :
828 : : const pass_data pass_data_df_finish =
829 : : {
830 : : RTL_PASS, /* type */
831 : : "dfinish", /* name */
832 : : OPTGROUP_NONE, /* optinfo_flags */
833 : : TV_NONE, /* tv_id */
834 : : 0, /* properties_required */
835 : : 0, /* properties_provided */
836 : : 0, /* properties_destroyed */
837 : : 0, /* todo_flags_start */
838 : : 0, /* todo_flags_finish */
839 : : };
840 : :
841 : : class pass_df_finish : public rtl_opt_pass
842 : : {
843 : : public:
844 : 281414 : pass_df_finish (gcc::context *ctxt)
845 : 562828 : : rtl_opt_pass (pass_data_df_finish, ctxt)
846 : : {}
847 : :
848 : : /* opt_pass methods: */
849 : 1464886 : unsigned int execute (function *) final override
850 : : {
851 : 1464886 : return rest_of_handle_df_finish ();
852 : : }
853 : :
854 : : }; // class pass_df_finish
855 : :
856 : : } // anon namespace
857 : :
858 : : rtl_opt_pass *
859 : 281414 : make_pass_df_finish (gcc::context *ctxt)
860 : : {
861 : 281414 : return new pass_df_finish (ctxt);
862 : : }
863 : :
864 : :
865 : :
866 : :
867 : :
868 : : /*----------------------------------------------------------------------------
869 : : The general data flow analysis engine.
870 : : ----------------------------------------------------------------------------*/
871 : :
872 : : /* Helper function for df_worklist_dataflow.
873 : : Propagate the dataflow forward.
874 : : Given a BB_INDEX, do the dataflow propagation
875 : : and set bits on for successors in PENDING for earlier
876 : : and WORKLIST for later in bbindex_to_postorder
877 : : if the out set of the dataflow has changed. When WORKLIST
878 : : is NULL we are processing all later blocks.
879 : :
880 : : AGE specify time when BB was visited last time.
881 : : AGE of 0 means we are visiting for first time and need to
882 : : compute transfer function to initialize datastructures.
883 : : Otherwise we re-do transfer function only if something change
884 : : while computing confluence functions.
885 : : We need to compute confluence only of basic block that are younger
886 : : then last visit of the BB.
887 : :
888 : : Return true if BB info has changed. This is always the case
889 : : in the first visit. */
890 : :
891 : : static bool
892 : 433217783 : df_worklist_propagate_forward (struct dataflow *dataflow,
893 : : unsigned bb_index,
894 : : unsigned *bbindex_to_postorder,
895 : : bitmap worklist,
896 : : bitmap pending,
897 : : sbitmap considered,
898 : : vec<int> &last_change_age,
899 : : int age)
900 : : {
901 : 433217783 : edge e;
902 : 433217783 : edge_iterator ei;
903 : 433217783 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
904 : 433217783 : bool changed = !age;
905 : :
906 : : /* Calculate <conf_op> of incoming edges. */
907 : 433217783 : if (EDGE_COUNT (bb->preds) > 0)
908 : 1032367710 : FOR_EACH_EDGE (e, ei, bb->preds)
909 : : {
910 : 80448873 : if ((!age || age <= last_change_age[e->src->index])
911 : 674035706 : && bitmap_bit_p (considered, e->src->index))
912 : 589252131 : changed |= dataflow->problem->con_fun_n (e);
913 : : }
914 : 19704788 : else if (dataflow->problem->con_fun_0)
915 : 1359723 : dataflow->problem->con_fun_0 (bb);
916 : :
917 : 433217783 : if (changed
918 : 433217783 : && dataflow->problem->trans_fun (bb_index))
919 : : {
920 : : /* The out set of this block has changed.
921 : : Propagate to the outgoing blocks. */
922 : 907471589 : FOR_EACH_EDGE (e, ei, bb->succs)
923 : : {
924 : 533009327 : unsigned ob_index = e->dest->index;
925 : :
926 : 533009327 : if (bitmap_bit_p (considered, ob_index))
927 : : {
928 : 526391935 : if (bbindex_to_postorder[bb_index]
929 : 526391935 : < bbindex_to_postorder[ob_index])
930 : : {
931 : 501967489 : if (worklist)
932 : 29025868 : bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
933 : : }
934 : : else
935 : 24424446 : bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
936 : : }
937 : : }
938 : : return true;
939 : : }
940 : : return false;
941 : : }
942 : :
943 : :
944 : : /* Helper function for df_worklist_dataflow.
945 : : Propagate the dataflow backward. */
946 : :
947 : : static bool
948 : 466405015 : df_worklist_propagate_backward (struct dataflow *dataflow,
949 : : unsigned bb_index,
950 : : unsigned *bbindex_to_postorder,
951 : : bitmap worklist,
952 : : bitmap pending,
953 : : sbitmap considered,
954 : : vec<int> &last_change_age,
955 : : int age)
956 : : {
957 : 466405015 : edge e;
958 : 466405015 : edge_iterator ei;
959 : 466405015 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
960 : 466405015 : bool changed = !age;
961 : :
962 : : /* Calculate <conf_op> of incoming edges. */
963 : 466405015 : if (EDGE_COUNT (bb->succs) > 0)
964 : 1108485604 : FOR_EACH_EDGE (e, ei, bb->succs)
965 : : {
966 : 112524301 : if ((!age || age <= last_change_age[e->dest->index])
967 : 757810952 : && bitmap_bit_p (considered, e->dest->index))
968 : 639775417 : changed |= dataflow->problem->con_fun_n (e);
969 : : }
970 : 32889532 : else if (dataflow->problem->con_fun_0)
971 : 29712867 : dataflow->problem->con_fun_0 (bb);
972 : :
973 : 466405015 : if (changed
974 : 466405015 : && dataflow->problem->trans_fun (bb_index))
975 : : {
976 : : /* The out set of this block has changed.
977 : : Propagate to the outgoing blocks. */
978 : 746936516 : FOR_EACH_EDGE (e, ei, bb->preds)
979 : : {
980 : 434554027 : unsigned ob_index = e->src->index;
981 : :
982 : 434554027 : if (bitmap_bit_p (considered, ob_index))
983 : : {
984 : 432789297 : if (bbindex_to_postorder[bb_index]
985 : 432789297 : < bbindex_to_postorder[ob_index])
986 : : {
987 : 410024321 : if (worklist)
988 : 58984019 : bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
989 : : }
990 : : else
991 : 22764976 : bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
992 : : }
993 : : }
994 : : return true;
995 : : }
996 : : return false;
997 : : }
998 : :
999 : : /* Main dataflow solver loop.
1000 : :
1001 : : DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
1002 : : need to visit.
1003 : : BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
1004 : : BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
1005 : : PENDING will be freed.
1006 : :
1007 : : The worklists are bitmaps indexed by postorder positions.
1008 : :
1009 : : The function implements standard algorithm for dataflow solving with two
1010 : : worklists (we are processing WORKLIST and storing new BBs to visit in
1011 : : PENDING).
1012 : :
1013 : : As an optimization we maintain ages when BB was changed (stored in
1014 : : last_change_age) and when it was last visited (stored in last_visit_age).
1015 : : This avoids need to re-do confluence function for edges to basic blocks
1016 : : whose source did not change since destination was visited last time. */
1017 : :
1018 : : static void
1019 : 41165919 : df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1020 : : sbitmap considered,
1021 : : int *blocks_in_postorder,
1022 : : unsigned *bbindex_to_postorder,
1023 : : unsigned n_blocks)
1024 : : {
1025 : 41165919 : enum df_flow_dir dir = dataflow->problem->dir;
1026 : 41165919 : int dcount = 0;
1027 : 41165919 : int age = 0;
1028 : 41165919 : bool changed;
1029 : 41165919 : vec<int> last_visit_age = vNULL;
1030 : 41165919 : vec<int> last_change_age = vNULL;
1031 : :
1032 : 41165919 : bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1033 : 41165919 : bitmap_tree_view (worklist);
1034 : :
1035 : 41165919 : last_visit_age.safe_grow (n_blocks, true);
1036 : 41165919 : last_change_age.safe_grow (last_basic_block_for_fn (cfun) + 1, true);
1037 : : /* Make last_change_age defined - we can access uninit values for not
1038 : : considered blocks but will make sure they are considered as well. */
1039 : : VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED
1040 : : (last_change_age.address (),
1041 : 41165919 : sizeof (int) * last_basic_block_for_fn (cfun)));
1042 : :
1043 : : /* We start with processing all blocks, populating pending for the
1044 : : next iteration. */
1045 : 41165919 : bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1046 : 41165919 : bitmap_tree_view (pending);
1047 : 831617486 : for (unsigned index = 0; index < n_blocks; ++index)
1048 : : {
1049 : 790451567 : unsigned bb_index = blocks_in_postorder[index];
1050 : 790451567 : dcount++;
1051 : 790451567 : if (dir == DF_FORWARD)
1052 : 389039461 : changed = df_worklist_propagate_forward (dataflow, bb_index,
1053 : : bbindex_to_postorder,
1054 : : NULL, pending,
1055 : : considered,
1056 : : last_change_age, 0);
1057 : : else
1058 : 401412106 : changed = df_worklist_propagate_backward (dataflow, bb_index,
1059 : : bbindex_to_postorder,
1060 : : NULL, pending,
1061 : : considered,
1062 : : last_change_age, 0);
1063 : 790451567 : last_visit_age[index] = ++age;
1064 : 790451567 : if (changed)
1065 : 623831918 : last_change_age[bb_index] = age;
1066 : : else
1067 : 166619649 : last_change_age[bb_index] = 0;
1068 : : }
1069 : :
1070 : : /* Double-queueing. Worklist is for the current iteration,
1071 : : and pending is for the next. */
1072 : 56131657 : while (!bitmap_empty_p (pending))
1073 : : {
1074 : : std::swap (pending, worklist);
1075 : :
1076 : 109171231 : do
1077 : : {
1078 : 109171231 : unsigned index = bitmap_clear_first_set_bit (worklist);
1079 : 109171231 : unsigned bb_index = blocks_in_postorder[index];
1080 : 109171231 : dcount++;
1081 : 109171231 : int prev_age = last_visit_age[index];
1082 : 109171231 : if (dir == DF_FORWARD)
1083 : 44178322 : changed = df_worklist_propagate_forward (dataflow, bb_index,
1084 : : bbindex_to_postorder,
1085 : : worklist, pending,
1086 : : considered,
1087 : : last_change_age,
1088 : : prev_age);
1089 : : else
1090 : 64992909 : changed = df_worklist_propagate_backward (dataflow, bb_index,
1091 : : bbindex_to_postorder,
1092 : : worklist, pending,
1093 : : considered,
1094 : : last_change_age,
1095 : : prev_age);
1096 : 109171231 : last_visit_age[index] = ++age;
1097 : 109171231 : if (changed)
1098 : 63012833 : last_change_age[bb_index] = age;
1099 : : }
1100 : 109171231 : while (!bitmap_empty_p (worklist));
1101 : : }
1102 : :
1103 : 41165919 : BITMAP_FREE (worklist);
1104 : 41165919 : BITMAP_FREE (pending);
1105 : 41165919 : last_visit_age.release ();
1106 : 41165919 : last_change_age.release ();
1107 : :
1108 : : /* Dump statistics. */
1109 : 41165919 : if (dump_file)
1110 : 1884 : fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1111 : : " n_basic_blocks %d n_edges %d"
1112 : : " count %d (%5.2g)\n",
1113 : : n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1114 : 1884 : dcount, dcount / (double)n_basic_blocks_for_fn (cfun));
1115 : 41165919 : }
1116 : :
1117 : : /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1118 : : with "n"-th bit representing the n-th block in the reverse-postorder order.
1119 : : The solver is a double-queue algorithm similar to the "double stack" solver
1120 : : from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1121 : : The only significant difference is that the worklist in this implementation
1122 : : is always sorted in RPO of the CFG visiting direction. */
1123 : :
1124 : : void
1125 : 41165919 : df_worklist_dataflow (struct dataflow *dataflow,
1126 : : bitmap blocks_to_consider,
1127 : : int *blocks_in_postorder,
1128 : : int n_blocks)
1129 : : {
1130 : 41165919 : bitmap_iterator bi;
1131 : 41165919 : unsigned int *bbindex_to_postorder;
1132 : 41165919 : int i;
1133 : 41165919 : unsigned int index;
1134 : 41165919 : enum df_flow_dir dir = dataflow->problem->dir;
1135 : :
1136 : 41165919 : gcc_assert (dir != DF_NONE);
1137 : :
1138 : : /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1139 : 41165919 : bbindex_to_postorder = XNEWVEC (unsigned int,
1140 : : last_basic_block_for_fn (cfun));
1141 : :
1142 : : /* Initialize the array to an out-of-bound value. */
1143 : 1598230589 : for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1144 : 1515898751 : bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1145 : :
1146 : : /* Initialize the considered map. */
1147 : 41165919 : auto_sbitmap considered (last_basic_block_for_fn (cfun));
1148 : 41165919 : bitmap_clear (considered);
1149 : 827803508 : EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1150 : : {
1151 : 786637589 : bitmap_set_bit (considered, index);
1152 : : }
1153 : :
1154 : : /* Initialize the mapping of block index to postorder. */
1155 : 831617486 : for (i = 0; i < n_blocks; i++)
1156 : 790451567 : bbindex_to_postorder[blocks_in_postorder[i]] = i;
1157 : :
1158 : : /* Initialize the problem. */
1159 : 41165919 : if (dataflow->problem->init_fun)
1160 : 38502330 : dataflow->problem->init_fun (blocks_to_consider);
1161 : :
1162 : : /* Solve it. */
1163 : 41165919 : df_worklist_dataflow_doublequeue (dataflow, considered, blocks_in_postorder,
1164 : : bbindex_to_postorder, n_blocks);
1165 : 41165919 : free (bbindex_to_postorder);
1166 : 41165919 : }
1167 : :
1168 : :
1169 : : /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1170 : : the order of the remaining entries. Returns the length of the resulting
1171 : : list. */
1172 : :
1173 : : static unsigned
1174 : 0 : df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1175 : : {
1176 : 0 : unsigned act, last;
1177 : :
1178 : 0 : for (act = 0, last = 0; act < len; act++)
1179 : 0 : if (bitmap_bit_p (blocks, list[act]))
1180 : 0 : list[last++] = list[act];
1181 : :
1182 : 0 : return last;
1183 : : }
1184 : :
1185 : :
1186 : : /* Execute dataflow analysis on a single dataflow problem.
1187 : :
1188 : : BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1189 : : examined or will be computed. For calls from DF_ANALYZE, this is
1190 : : the set of blocks that has been passed to DF_SET_BLOCKS.
1191 : : */
1192 : :
1193 : : void
1194 : 83316520 : df_analyze_problem (struct dataflow *dflow,
1195 : : bitmap blocks_to_consider,
1196 : : int *postorder, int n_blocks)
1197 : : {
1198 : 83316520 : timevar_push (dflow->problem->tv_id);
1199 : :
1200 : : /* (Re)Allocate the datastructures necessary to solve the problem. */
1201 : 83316520 : if (dflow->problem->alloc_fun)
1202 : 59449893 : dflow->problem->alloc_fun (blocks_to_consider);
1203 : :
1204 : : #ifdef ENABLE_DF_CHECKING
1205 : : if (dflow->problem->verify_start_fun)
1206 : : dflow->problem->verify_start_fun ();
1207 : : #endif
1208 : :
1209 : : /* Set up the problem and compute the local information. */
1210 : 83316520 : if (dflow->problem->local_compute_fun)
1211 : 53464112 : dflow->problem->local_compute_fun (blocks_to_consider);
1212 : :
1213 : : /* Solve the equations. */
1214 : 83316520 : if (dflow->problem->dataflow_fun)
1215 : 37801065 : dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1216 : : postorder, n_blocks);
1217 : :
1218 : : /* Massage the solution. */
1219 : 83316520 : if (dflow->problem->finalize_fun)
1220 : 60554681 : dflow->problem->finalize_fun (blocks_to_consider);
1221 : :
1222 : : #ifdef ENABLE_DF_CHECKING
1223 : : if (dflow->problem->verify_end_fun)
1224 : : dflow->problem->verify_end_fun ();
1225 : : #endif
1226 : :
1227 : 83316520 : timevar_pop (dflow->problem->tv_id);
1228 : :
1229 : 83316520 : dflow->computed = true;
1230 : 83316520 : }
1231 : :
1232 : :
1233 : : /* Analyze dataflow info. */
1234 : :
1235 : : static void
1236 : 41624664 : df_analyze_1 (void)
1237 : : {
1238 : 41624664 : int i;
1239 : :
1240 : : /* We need to do this before the df_verify_all because this is
1241 : : not kept incrementally up to date. */
1242 : 41624664 : df_compute_regs_ever_live (false);
1243 : 41624664 : df_process_deferred_rescans ();
1244 : :
1245 : 41624664 : if (dump_file)
1246 : 1659 : fprintf (dump_file, "df_analyze called\n");
1247 : :
1248 : : #ifndef ENABLE_DF_CHECKING
1249 : 41624664 : if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1250 : : #endif
1251 : 6341333 : df_verify ();
1252 : :
1253 : : /* Skip over the DF_SCAN problem. */
1254 : 189737912 : for (i = 1; i < df->num_problems_defined; i++)
1255 : : {
1256 : 148113248 : struct dataflow *dflow = df->problems_in_order[i];
1257 : 148113248 : if (dflow->solutions_dirty)
1258 : : {
1259 : 83315873 : if (dflow->problem->dir == DF_FORWARD)
1260 : 21521944 : df_analyze_problem (dflow,
1261 : : df->blocks_to_analyze,
1262 : : df->postorder_inverted,
1263 : : df->n_blocks);
1264 : : else
1265 : 61793929 : df_analyze_problem (dflow,
1266 : : df->blocks_to_analyze,
1267 : : df->postorder,
1268 : : df->n_blocks);
1269 : : }
1270 : : }
1271 : :
1272 : 41624664 : if (!df->analyze_subset)
1273 : : {
1274 : 40322392 : BITMAP_FREE (df->blocks_to_analyze);
1275 : 40322392 : df->blocks_to_analyze = NULL;
1276 : : }
1277 : :
1278 : : #ifdef DF_DEBUG_CFG
1279 : : df_set_clean_cfg ();
1280 : : #endif
1281 : 41624664 : }
1282 : :
1283 : : /* Analyze dataflow info. */
1284 : :
1285 : : void
1286 : 40322392 : df_analyze (void)
1287 : : {
1288 : 40322392 : bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1289 : :
1290 : 40322392 : free (df->postorder);
1291 : 40322392 : free (df->postorder_inverted);
1292 : : /* For DF_FORWARD use a RPO on the forward graph. Since we want to
1293 : : have unreachable blocks deleted use post_order_compute and reverse
1294 : : the order. */
1295 : 40322392 : df->postorder_inverted = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1296 : 40322392 : df->n_blocks = post_order_compute (df->postorder_inverted, true, true);
1297 : 309353311 : for (int i = 0; i < df->n_blocks / 2; ++i)
1298 : 269030919 : std::swap (df->postorder_inverted[i],
1299 : 269030919 : df->postorder_inverted[df->n_blocks - 1 - i]);
1300 : : /* For DF_BACKWARD use a RPO on the reverse graph. */
1301 : 40322392 : df->postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1302 : 40322392 : int n = inverted_rev_post_order_compute (cfun, df->postorder);
1303 : 40322392 : gcc_assert (n == df->n_blocks);
1304 : :
1305 : 609589993 : for (int i = 0; i < df->n_blocks; i++)
1306 : 569267601 : bitmap_set_bit (current_all_blocks, df->postorder[i]);
1307 : :
1308 : 40322392 : if (flag_checking)
1309 : : {
1310 : : /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1311 : : the ENTRY block. */
1312 : 609585609 : for (int i = 0; i < df->n_blocks; i++)
1313 : 569263856 : gcc_assert (bitmap_bit_p (current_all_blocks,
1314 : : df->postorder_inverted[i]));
1315 : : }
1316 : :
1317 : : /* Make sure that we have pruned any unreachable blocks from these
1318 : : sets. */
1319 : 40322392 : if (df->analyze_subset)
1320 : : {
1321 : 0 : bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1322 : 0 : unsigned int newlen = df_prune_to_subcfg (df->postorder, df->n_blocks,
1323 : : df->blocks_to_analyze);
1324 : 0 : df_prune_to_subcfg (df->postorder_inverted, df->n_blocks,
1325 : : df->blocks_to_analyze);
1326 : 0 : df->n_blocks = newlen;
1327 : 0 : BITMAP_FREE (current_all_blocks);
1328 : : }
1329 : : else
1330 : : {
1331 : 40322392 : df->blocks_to_analyze = current_all_blocks;
1332 : 40322392 : current_all_blocks = NULL;
1333 : : }
1334 : :
1335 : 40322392 : df_analyze_1 ();
1336 : 40322392 : }
1337 : :
1338 : : /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1339 : : Returns the number of blocks which is always loop->num_nodes. */
1340 : :
1341 : : static int
1342 : 1302272 : loop_rev_post_order_compute (int *post_order, class loop *loop)
1343 : : {
1344 : 1302272 : edge_iterator *stack;
1345 : 1302272 : int sp;
1346 : 1302272 : int post_order_num = loop->num_nodes - 1;
1347 : :
1348 : : /* Allocate stack for back-tracking up CFG. */
1349 : 1302272 : stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1350 : 1302272 : sp = 0;
1351 : :
1352 : : /* Allocate bitmap to track nodes that have been visited. */
1353 : 1302272 : auto_bitmap visited;
1354 : :
1355 : : /* Push the first edge on to the stack. */
1356 : 1302272 : stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1357 : :
1358 : 22845983 : while (sp)
1359 : : {
1360 : 21543711 : edge_iterator ei;
1361 : 21543711 : basic_block src;
1362 : 21543711 : basic_block dest;
1363 : :
1364 : : /* Look at the edge on the top of the stack. */
1365 : 21543711 : ei = stack[sp - 1];
1366 : 21543711 : src = ei_edge (ei)->src;
1367 : 21543711 : dest = ei_edge (ei)->dest;
1368 : :
1369 : : /* Check if the edge destination has been visited yet and mark it
1370 : : if not so. */
1371 : 21543711 : if (flow_bb_inside_loop_p (loop, dest)
1372 : 21543711 : && bitmap_set_bit (visited, dest->index))
1373 : : {
1374 : 7906373 : if (EDGE_COUNT (dest->succs) > 0)
1375 : : /* Since the DEST node has been visited for the first
1376 : : time, check its successors. */
1377 : 7906373 : stack[sp++] = ei_start (dest->succs);
1378 : : else
1379 : 0 : post_order[post_order_num--] = dest->index;
1380 : : }
1381 : : else
1382 : : {
1383 : 13637338 : if (ei_one_before_end_p (ei)
1384 : 13637338 : && src != loop_preheader_edge (loop)->src)
1385 : 7906373 : post_order[post_order_num--] = src->index;
1386 : :
1387 : 13637338 : if (!ei_one_before_end_p (ei))
1388 : 4428693 : ei_next (&stack[sp - 1]);
1389 : : else
1390 : 9208645 : sp--;
1391 : : }
1392 : : }
1393 : :
1394 : 1302272 : free (stack);
1395 : :
1396 : 1302272 : return loop->num_nodes;
1397 : 1302272 : }
1398 : :
1399 : : /* Compute the reverse top sort order of the inverted sub-CFG specified
1400 : : by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1401 : :
1402 : : static int
1403 : 1302272 : loop_inverted_rev_post_order_compute (int *post_order, class loop *loop)
1404 : : {
1405 : 1302272 : basic_block bb;
1406 : 1302272 : edge_iterator *stack;
1407 : 1302272 : int sp;
1408 : 1302272 : int post_order_num = loop->num_nodes - 1;
1409 : :
1410 : : /* Allocate stack for back-tracking up CFG. */
1411 : 1302272 : stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1412 : 1302272 : sp = 0;
1413 : :
1414 : : /* Allocate bitmap to track nodes that have been visited. */
1415 : 1302272 : auto_bitmap visited;
1416 : :
1417 : : /* Put all latches into the initial work list. In theory we'd want
1418 : : to start from loop exits but then we'd have the special case of
1419 : : endless loops. It doesn't really matter for DF iteration order and
1420 : : handling latches last is probably even better. */
1421 : 1302272 : stack[sp++] = ei_start (loop->header->preds);
1422 : 1302272 : bitmap_set_bit (visited, loop->header->index);
1423 : :
1424 : : /* The inverted traversal loop. */
1425 : 20412993 : while (sp)
1426 : : {
1427 : 17808449 : edge_iterator ei;
1428 : 17808449 : basic_block pred;
1429 : :
1430 : : /* Look at the edge on the top of the stack. */
1431 : 17808449 : ei = stack[sp - 1];
1432 : 17808449 : bb = ei_edge (ei)->dest;
1433 : 17808449 : pred = ei_edge (ei)->src;
1434 : :
1435 : : /* Check if the predecessor has been visited yet and mark it
1436 : : if not so. */
1437 : 17808449 : if (flow_bb_inside_loop_p (loop, pred)
1438 : 17808449 : && bitmap_set_bit (visited, pred->index))
1439 : : {
1440 : 6604101 : if (EDGE_COUNT (pred->preds) > 0)
1441 : : /* Since the predecessor node has been visited for the first
1442 : : time, check its predecessors. */
1443 : 6604101 : stack[sp++] = ei_start (pred->preds);
1444 : : else
1445 : 0 : post_order[post_order_num--] = pred->index;
1446 : : }
1447 : : else
1448 : : {
1449 : 11204348 : if (flow_bb_inside_loop_p (loop, bb)
1450 : 11204348 : && ei_one_before_end_p (ei))
1451 : 7906373 : post_order[post_order_num--] = bb->index;
1452 : :
1453 : 11204348 : if (!ei_one_before_end_p (ei))
1454 : 3297975 : ei_next (&stack[sp - 1]);
1455 : : else
1456 : 7906373 : sp--;
1457 : : }
1458 : : }
1459 : :
1460 : 1302272 : free (stack);
1461 : 1302272 : return loop->num_nodes;
1462 : 1302272 : }
1463 : :
1464 : :
1465 : : /* Analyze dataflow info for the basic blocks contained in LOOP. */
1466 : :
1467 : : void
1468 : 1302272 : df_analyze_loop (class loop *loop)
1469 : : {
1470 : 1302272 : free (df->postorder);
1471 : 1302272 : free (df->postorder_inverted);
1472 : :
1473 : 1302272 : df->postorder = XNEWVEC (int, loop->num_nodes);
1474 : 1302272 : df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1475 : 1302272 : df->n_blocks = loop_rev_post_order_compute (df->postorder_inverted, loop);
1476 : 1302272 : int n = loop_inverted_rev_post_order_compute (df->postorder, loop);
1477 : 1302272 : gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1478 : 1302272 : gcc_assert ((unsigned) n == loop->num_nodes);
1479 : :
1480 : 1302272 : bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1481 : 9208645 : for (int i = 0; i < df->n_blocks; ++i)
1482 : 7906373 : bitmap_set_bit (blocks, df->postorder[i]);
1483 : 1302272 : df_set_blocks (blocks);
1484 : 1302272 : BITMAP_FREE (blocks);
1485 : :
1486 : 1302272 : df_analyze_1 ();
1487 : 1302272 : }
1488 : :
1489 : :
1490 : : /* Return the number of basic blocks from the last call to df_analyze. */
1491 : :
1492 : : int
1493 : 12669980 : df_get_n_blocks (enum df_flow_dir dir)
1494 : : {
1495 : 12669980 : gcc_assert (dir != DF_NONE);
1496 : :
1497 : 12669980 : if (dir == DF_FORWARD)
1498 : : {
1499 : 372196 : gcc_assert (df->postorder_inverted);
1500 : 372196 : return df->n_blocks;
1501 : : }
1502 : :
1503 : 12297784 : gcc_assert (df->postorder);
1504 : 12297784 : return df->n_blocks;
1505 : : }
1506 : :
1507 : :
1508 : : /* Return a pointer to the array of basic blocks in the reverse postorder.
1509 : : Depending on the direction of the dataflow problem,
1510 : : it returns either the usual reverse postorder array
1511 : : or the reverse postorder of inverted traversal. */
1512 : : int *
1513 : 12669980 : df_get_postorder (enum df_flow_dir dir)
1514 : : {
1515 : 12669980 : gcc_assert (dir != DF_NONE);
1516 : :
1517 : 12669980 : if (dir == DF_FORWARD)
1518 : : {
1519 : 372196 : gcc_assert (df->postorder_inverted);
1520 : : return df->postorder_inverted;
1521 : : }
1522 : 12297784 : gcc_assert (df->postorder);
1523 : : return df->postorder;
1524 : : }
1525 : :
1526 : : static struct df_problem user_problem;
1527 : : static struct dataflow user_dflow;
1528 : :
1529 : : /* Interface for calling iterative dataflow with user defined
1530 : : confluence and transfer functions. All that is necessary is to
1531 : : supply DIR, a direction, CONF_FUN_0, a confluence function for
1532 : : blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1533 : : confluence function, TRANS_FUN, the basic block transfer function,
1534 : : and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1535 : : postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1536 : :
1537 : : void
1538 : 2663589 : df_simple_dataflow (enum df_flow_dir dir,
1539 : : df_init_function init_fun,
1540 : : df_confluence_function_0 con_fun_0,
1541 : : df_confluence_function_n con_fun_n,
1542 : : df_transfer_function trans_fun,
1543 : : bitmap blocks, int * postorder, int n_blocks)
1544 : : {
1545 : 2663589 : memset (&user_problem, 0, sizeof (struct df_problem));
1546 : 2663589 : user_problem.dir = dir;
1547 : 2663589 : user_problem.init_fun = init_fun;
1548 : 2663589 : user_problem.con_fun_0 = con_fun_0;
1549 : 2663589 : user_problem.con_fun_n = con_fun_n;
1550 : 2663589 : user_problem.trans_fun = trans_fun;
1551 : 2663589 : user_dflow.problem = &user_problem;
1552 : 2663589 : df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1553 : 2663589 : }
1554 : :
1555 : :
1556 : :
1557 : : /*----------------------------------------------------------------------------
1558 : : Functions to support limited incremental change.
1559 : : ----------------------------------------------------------------------------*/
1560 : :
1561 : :
1562 : : /* Get basic block info. */
1563 : :
1564 : : static void *
1565 : 23494793 : df_get_bb_info (struct dataflow *dflow, unsigned int index)
1566 : : {
1567 : 3473237 : if (dflow->block_info == NULL)
1568 : : return NULL;
1569 : 23494793 : if (index >= dflow->block_info_size)
1570 : : return NULL;
1571 : 23239688 : return (void *)((char *)dflow->block_info
1572 : 3510656 : + index * dflow->problem->block_info_elt_size);
1573 : : }
1574 : :
1575 : :
1576 : : /* Set basic block info. */
1577 : :
1578 : : static void
1579 : 621668630 : df_set_bb_info (struct dataflow *dflow, unsigned int index,
1580 : : void *bb_info)
1581 : : {
1582 : 621668630 : gcc_assert (dflow->block_info);
1583 : 621668630 : memcpy ((char *)dflow->block_info
1584 : 621668630 : + index * dflow->problem->block_info_elt_size,
1585 : 621668630 : bb_info, dflow->problem->block_info_elt_size);
1586 : 621668630 : }
1587 : :
1588 : :
1589 : : /* Clear basic block info. */
1590 : :
1591 : : static void
1592 : 23202269 : df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1593 : : {
1594 : 23202269 : gcc_assert (dflow->block_info);
1595 : 23202269 : gcc_assert (dflow->block_info_size > index);
1596 : 23202269 : memset ((char *)dflow->block_info
1597 : 23202269 : + index * dflow->problem->block_info_elt_size,
1598 : 23202269 : 0, dflow->problem->block_info_elt_size);
1599 : 23202269 : }
1600 : :
1601 : :
1602 : : /* Mark the solutions as being out of date. */
1603 : :
1604 : : void
1605 : 928506855 : df_mark_solutions_dirty (void)
1606 : : {
1607 : 928506855 : if (df)
1608 : : {
1609 : : int p;
1610 : 1674404833 : for (p = 1; p < df->num_problems_defined; p++)
1611 : 1256651646 : df->problems_in_order[p]->solutions_dirty = true;
1612 : : }
1613 : 928506855 : }
1614 : :
1615 : :
1616 : : /* Return true if BB needs it's transfer functions recomputed. */
1617 : :
1618 : : bool
1619 : 105895853 : df_get_bb_dirty (basic_block bb)
1620 : : {
1621 : 211791706 : return bitmap_bit_p ((df_live
1622 : 105895853 : ? df_live : df_lr)->out_of_date_transfer_functions,
1623 : 105895853 : bb->index);
1624 : : }
1625 : :
1626 : :
1627 : : /* Mark BB as needing it's transfer functions as being out of
1628 : : date. */
1629 : :
1630 : : void
1631 : 346151437 : df_set_bb_dirty (basic_block bb)
1632 : : {
1633 : 346151437 : bb->flags |= BB_MODIFIED;
1634 : 346151437 : if (df)
1635 : : {
1636 : : int p;
1637 : 1341122424 : for (p = 1; p < df->num_problems_defined; p++)
1638 : : {
1639 : 1002416147 : struct dataflow *dflow = df->problems_in_order[p];
1640 : 1002416147 : if (dflow->out_of_date_transfer_functions)
1641 : 525679804 : bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1642 : : }
1643 : 338706277 : df_mark_solutions_dirty ();
1644 : : }
1645 : 346151437 : }
1646 : :
1647 : :
1648 : : /* Grow the bb_info array. */
1649 : :
1650 : : void
1651 : 1274431365 : df_grow_bb_info (struct dataflow *dflow)
1652 : : {
1653 : 1274431365 : unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1654 : 1274431365 : if (dflow->block_info_size < new_size)
1655 : : {
1656 : 14100325 : new_size += new_size / 4;
1657 : 14100325 : dflow->block_info
1658 : 14100325 : = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1659 : : new_size
1660 : : * dflow->problem->block_info_elt_size);
1661 : 14100325 : memset ((char *)dflow->block_info
1662 : : + dflow->block_info_size
1663 : 14100325 : * dflow->problem->block_info_elt_size,
1664 : : 0,
1665 : 14100325 : (new_size - dflow->block_info_size)
1666 : 14100325 : * dflow->problem->block_info_elt_size);
1667 : 14100325 : dflow->block_info_size = new_size;
1668 : : }
1669 : 1274431365 : }
1670 : :
1671 : :
1672 : : /* Clear the dirty bits. This is called from places that delete
1673 : : blocks. */
1674 : : static void
1675 : 6763663 : df_clear_bb_dirty (basic_block bb)
1676 : : {
1677 : 6763663 : int p;
1678 : 27457268 : for (p = 1; p < df->num_problems_defined; p++)
1679 : : {
1680 : 20693605 : struct dataflow *dflow = df->problems_in_order[p];
1681 : 20693605 : if (dflow->out_of_date_transfer_functions)
1682 : 13257885 : bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1683 : : }
1684 : 6763663 : }
1685 : :
1686 : : /* Called from the rtl_compact_blocks to reorganize the problems basic
1687 : : block info. */
1688 : :
1689 : : void
1690 : 17808702 : df_compact_blocks (void)
1691 : : {
1692 : 17808702 : int i, p;
1693 : 17808702 : basic_block bb;
1694 : 17808702 : void *problem_temps;
1695 : :
1696 : 17808702 : auto_bitmap tmp (&df_bitmap_obstack);
1697 : 88354075 : for (p = 0; p < df->num_problems_defined; p++)
1698 : : {
1699 : 70545373 : struct dataflow *dflow = df->problems_in_order[p];
1700 : :
1701 : : /* Need to reorganize the out_of_date_transfer_functions for the
1702 : : dflow problem. */
1703 : 70545373 : if (dflow->out_of_date_transfer_functions)
1704 : : {
1705 : 32848475 : bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1706 : 32848475 : bitmap_clear (dflow->out_of_date_transfer_functions);
1707 : 32848475 : if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1708 : 924823 : bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1709 : 32848475 : if (bitmap_bit_p (tmp, EXIT_BLOCK))
1710 : 925043 : bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1711 : :
1712 : 32848475 : i = NUM_FIXED_BLOCKS;
1713 : 439053023 : FOR_EACH_BB_FN (bb, cfun)
1714 : : {
1715 : 406204548 : if (bitmap_bit_p (tmp, bb->index))
1716 : 71628110 : bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1717 : 406204548 : i++;
1718 : : }
1719 : : }
1720 : :
1721 : : /* Now shuffle the block info for the problem. */
1722 : 70545373 : if (dflow->problem->free_bb_fun)
1723 : : {
1724 : 50657177 : int size = (last_basic_block_for_fn (cfun)
1725 : 50657177 : * dflow->problem->block_info_elt_size);
1726 : 50657177 : problem_temps = XNEWVAR (char, size);
1727 : 50657177 : df_grow_bb_info (dflow);
1728 : 50657177 : memcpy (problem_temps, dflow->block_info, size);
1729 : :
1730 : : /* Copy the bb info from the problem tmps to the proper
1731 : : place in the block_info vector. Null out the copied
1732 : : item. The entry and exit blocks never move. */
1733 : 50657177 : i = NUM_FIXED_BLOCKS;
1734 : 672288388 : FOR_EACH_BB_FN (bb, cfun)
1735 : : {
1736 : 621631211 : df_set_bb_info (dflow, i,
1737 : : (char *)problem_temps
1738 : 621631211 : + bb->index * dflow->problem->block_info_elt_size);
1739 : 621631211 : i++;
1740 : : }
1741 : 50657177 : memset ((char *)dflow->block_info
1742 : 50657177 : + i * dflow->problem->block_info_elt_size, 0,
1743 : 50657177 : (last_basic_block_for_fn (cfun) - i)
1744 : 50657177 : * dflow->problem->block_info_elt_size);
1745 : 50657177 : free (problem_temps);
1746 : : }
1747 : : }
1748 : :
1749 : : /* Shuffle the bits in the basic_block indexed arrays. */
1750 : :
1751 : 17808702 : if (df->blocks_to_analyze)
1752 : : {
1753 : 0 : if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1754 : 0 : bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1755 : 0 : if (bitmap_bit_p (tmp, EXIT_BLOCK))
1756 : 0 : bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1757 : 0 : bitmap_copy (tmp, df->blocks_to_analyze);
1758 : 0 : bitmap_clear (df->blocks_to_analyze);
1759 : 0 : i = NUM_FIXED_BLOCKS;
1760 : 0 : FOR_EACH_BB_FN (bb, cfun)
1761 : : {
1762 : 0 : if (bitmap_bit_p (tmp, bb->index))
1763 : 0 : bitmap_set_bit (df->blocks_to_analyze, i);
1764 : 0 : i++;
1765 : : }
1766 : : }
1767 : :
1768 : 17808702 : i = NUM_FIXED_BLOCKS;
1769 : 233235365 : FOR_EACH_BB_FN (bb, cfun)
1770 : : {
1771 : 215426663 : SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1772 : 215426663 : bb->index = i;
1773 : 215426663 : i++;
1774 : : }
1775 : :
1776 : 17808702 : gcc_assert (i == n_basic_blocks_for_fn (cfun));
1777 : :
1778 : 24568619 : for (; i < last_basic_block_for_fn (cfun); i++)
1779 : 6759917 : SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1780 : :
1781 : : #ifdef DF_DEBUG_CFG
1782 : : if (!df_lr->solutions_dirty)
1783 : : df_set_clean_cfg ();
1784 : : #endif
1785 : 17808702 : }
1786 : :
1787 : :
1788 : : /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1789 : : block. There is no excuse for people to do this kind of thing. */
1790 : :
1791 : : void
1792 : 12473 : df_bb_replace (int old_index, basic_block new_block)
1793 : : {
1794 : 12473 : int new_block_index = new_block->index;
1795 : 12473 : int p;
1796 : :
1797 : 12473 : if (dump_file)
1798 : 0 : fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1799 : :
1800 : 12473 : gcc_assert (df);
1801 : 12473 : gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1802 : :
1803 : 62365 : for (p = 0; p < df->num_problems_defined; p++)
1804 : : {
1805 : 49892 : struct dataflow *dflow = df->problems_in_order[p];
1806 : 49892 : if (dflow->block_info)
1807 : : {
1808 : 37419 : df_grow_bb_info (dflow);
1809 : 74838 : df_set_bb_info (dflow, old_index,
1810 : : df_get_bb_info (dflow, new_block_index));
1811 : : }
1812 : : }
1813 : :
1814 : 12473 : df_clear_bb_dirty (new_block);
1815 : 12473 : SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1816 : 12473 : new_block->index = old_index;
1817 : 12473 : df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1818 : 12473 : SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1819 : 12473 : }
1820 : :
1821 : :
1822 : : /* Free all of the per basic block dataflow from all of the problems.
1823 : : This is typically called before a basic block is deleted and the
1824 : : problem will be reanalyzed. */
1825 : :
1826 : : void
1827 : 11494452 : df_bb_delete (int bb_index)
1828 : : {
1829 : 11494452 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1830 : 11494452 : int i;
1831 : :
1832 : 11494452 : if (!df)
1833 : : return;
1834 : :
1835 : 34158566 : for (i = 0; i < df->num_problems_defined; i++)
1836 : : {
1837 : 27407376 : struct dataflow *dflow = df->problems_in_order[i];
1838 : 27407376 : if (dflow->problem->free_bb_fun)
1839 : : {
1840 : 47391513 : void *bb_info = df_get_bb_info (dflow, bb_index);
1841 : 19729032 : if (bb_info)
1842 : : {
1843 : 19729032 : dflow->problem->free_bb_fun (bb, bb_info);
1844 : 19729032 : df_clear_bb_info (dflow, bb_index);
1845 : : }
1846 : : }
1847 : : }
1848 : 6751190 : df_clear_bb_dirty (bb);
1849 : 6751190 : df_mark_solutions_dirty ();
1850 : : }
1851 : :
1852 : :
1853 : : /* Verify that there is a place for everything and everything is in
1854 : : its place. This is too expensive to run after every pass in the
1855 : : mainline. However this is an excellent debugging tool if the
1856 : : dataflow information is not being updated properly. You can just
1857 : : sprinkle calls in until you find the place that is changing an
1858 : : underlying structure without calling the proper updating
1859 : : routine. */
1860 : :
1861 : : void
1862 : 6341333 : df_verify (void)
1863 : : {
1864 : 6341333 : df_scan_verify ();
1865 : : #ifdef ENABLE_DF_CHECKING
1866 : : df_lr_verify_transfer_functions ();
1867 : : if (df_live)
1868 : : df_live_verify_transfer_functions ();
1869 : : #endif
1870 : 6341333 : df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
1871 : 6341333 : }
1872 : :
1873 : : #ifdef DF_DEBUG_CFG
1874 : :
1875 : : /* Compute an array of ints that describes the cfg. This can be used
1876 : : to discover places where the cfg is modified by the appropriate
1877 : : calls have not been made to the keep df informed. The internals of
1878 : : this are unexciting, the key is that two instances of this can be
1879 : : compared to see if any changes have been made to the cfg. */
1880 : :
1881 : : static int *
1882 : : df_compute_cfg_image (void)
1883 : : {
1884 : : basic_block bb;
1885 : : int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1886 : : int i;
1887 : : int * map;
1888 : :
1889 : : FOR_ALL_BB_FN (bb, cfun)
1890 : : {
1891 : : size += EDGE_COUNT (bb->succs);
1892 : : }
1893 : :
1894 : : map = XNEWVEC (int, size);
1895 : : map[0] = size;
1896 : : i = 1;
1897 : : FOR_ALL_BB_FN (bb, cfun)
1898 : : {
1899 : : edge_iterator ei;
1900 : : edge e;
1901 : :
1902 : : map[i++] = bb->index;
1903 : : FOR_EACH_EDGE (e, ei, bb->succs)
1904 : : map[i++] = e->dest->index;
1905 : : map[i++] = -1;
1906 : : }
1907 : : map[i] = -1;
1908 : : return map;
1909 : : }
1910 : :
1911 : : static int *saved_cfg = NULL;
1912 : :
1913 : :
1914 : : /* This function compares the saved version of the cfg with the
1915 : : current cfg and aborts if the two are identical. The function
1916 : : silently returns if the cfg has been marked as dirty or the two are
1917 : : the same. */
1918 : :
1919 : : void
1920 : : df_check_cfg_clean (void)
1921 : : {
1922 : : int *new_map;
1923 : :
1924 : : if (!df)
1925 : : return;
1926 : :
1927 : : if (df_lr->solutions_dirty)
1928 : : return;
1929 : :
1930 : : if (saved_cfg == NULL)
1931 : : return;
1932 : :
1933 : : new_map = df_compute_cfg_image ();
1934 : : gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1935 : : free (new_map);
1936 : : }
1937 : :
1938 : :
1939 : : /* This function builds a cfg fingerprint and squirrels it away in
1940 : : saved_cfg. */
1941 : :
1942 : : static void
1943 : : df_set_clean_cfg (void)
1944 : : {
1945 : : free (saved_cfg);
1946 : : saved_cfg = df_compute_cfg_image ();
1947 : : }
1948 : :
1949 : : #endif /* DF_DEBUG_CFG */
1950 : : /*----------------------------------------------------------------------------
1951 : : PUBLIC INTERFACES TO QUERY INFORMATION.
1952 : : ----------------------------------------------------------------------------*/
1953 : :
1954 : :
1955 : : /* Return first def of REGNO within BB. */
1956 : :
1957 : : df_ref
1958 : 0 : df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1959 : : {
1960 : 0 : rtx_insn *insn;
1961 : 0 : df_ref def;
1962 : :
1963 : 0 : FOR_BB_INSNS (bb, insn)
1964 : : {
1965 : 0 : if (!INSN_P (insn))
1966 : 0 : continue;
1967 : :
1968 : 0 : FOR_EACH_INSN_DEF (def, insn)
1969 : 0 : if (DF_REF_REGNO (def) == regno)
1970 : : return def;
1971 : : }
1972 : : return NULL;
1973 : : }
1974 : :
1975 : :
1976 : : /* Return last def of REGNO within BB. */
1977 : :
1978 : : df_ref
1979 : 0 : df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1980 : : {
1981 : 0 : rtx_insn *insn;
1982 : 0 : df_ref def;
1983 : :
1984 : 0 : FOR_BB_INSNS_REVERSE (bb, insn)
1985 : : {
1986 : 0 : if (!INSN_P (insn))
1987 : 0 : continue;
1988 : :
1989 : 0 : FOR_EACH_INSN_DEF (def, insn)
1990 : 0 : if (DF_REF_REGNO (def) == regno)
1991 : : return def;
1992 : : }
1993 : :
1994 : : return NULL;
1995 : : }
1996 : :
1997 : : /* Return the one and only def of REGNO within BB. If there is no def or
1998 : : there are multiple defs, return NULL. */
1999 : :
2000 : : df_ref
2001 : 0 : df_bb_regno_only_def_find (basic_block bb, unsigned int regno)
2002 : : {
2003 : 0 : df_ref temp = df_bb_regno_first_def_find (bb, regno);
2004 : 0 : if (!temp)
2005 : : return NULL;
2006 : 0 : else if (temp == df_bb_regno_last_def_find (bb, regno))
2007 : : return temp;
2008 : : else
2009 : : return NULL;
2010 : : }
2011 : :
2012 : : /* Finds the reference corresponding to the definition of REG in INSN.
2013 : : DF is the dataflow object. */
2014 : :
2015 : : df_ref
2016 : 762356 : df_find_def (rtx_insn *insn, rtx reg)
2017 : : {
2018 : 762356 : df_ref def;
2019 : :
2020 : 762356 : if (GET_CODE (reg) == SUBREG)
2021 : 0 : reg = SUBREG_REG (reg);
2022 : 762356 : gcc_assert (REG_P (reg));
2023 : :
2024 : 1083713 : FOR_EACH_INSN_DEF (def, insn)
2025 : 1083713 : if (DF_REF_REGNO (def) == REGNO (reg))
2026 : : return def;
2027 : :
2028 : : return NULL;
2029 : : }
2030 : :
2031 : :
2032 : : /* Return true if REG is defined in INSN, zero otherwise. */
2033 : :
2034 : : bool
2035 : 0 : df_reg_defined (rtx_insn *insn, rtx reg)
2036 : : {
2037 : 0 : return df_find_def (insn, reg) != NULL;
2038 : : }
2039 : :
2040 : :
2041 : : /* Finds the reference corresponding to the use of REG in INSN.
2042 : : DF is the dataflow object. */
2043 : :
2044 : : df_ref
2045 : 4801571 : df_find_use (rtx_insn *insn, rtx reg)
2046 : : {
2047 : 4801571 : df_ref use;
2048 : :
2049 : 4801571 : if (GET_CODE (reg) == SUBREG)
2050 : 0 : reg = SUBREG_REG (reg);
2051 : 4801571 : gcc_assert (REG_P (reg));
2052 : :
2053 : 4801571 : df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2054 : 5710614 : FOR_EACH_INSN_INFO_USE (use, insn_info)
2055 : 5710614 : if (DF_REF_REGNO (use) == REGNO (reg))
2056 : : return use;
2057 : 0 : if (df->changeable_flags & DF_EQ_NOTES)
2058 : 0 : FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2059 : 0 : if (DF_REF_REGNO (use) == REGNO (reg))
2060 : : return use;
2061 : : return NULL;
2062 : : }
2063 : :
2064 : :
2065 : : /* Return true if REG is referenced in INSN, zero otherwise. */
2066 : :
2067 : : bool
2068 : 0 : df_reg_used (rtx_insn *insn, rtx reg)
2069 : : {
2070 : 0 : return df_find_use (insn, reg) != NULL;
2071 : : }
2072 : :
2073 : : /* If REG has a single definition, return its known value, otherwise return
2074 : : null. */
2075 : :
2076 : : rtx
2077 : 8880224 : df_find_single_def_src (rtx reg)
2078 : : {
2079 : 8880224 : rtx src = NULL_RTX;
2080 : :
2081 : : /* Don't look through unbounded number of single definition REG copies,
2082 : : there might be loops for sources with uninitialized variables. */
2083 : 9701866 : for (int cnt = 0; cnt < 128; cnt++)
2084 : : {
2085 : 9701858 : df_ref adef = DF_REG_DEF_CHAIN (REGNO (reg));
2086 : 9701858 : if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
2087 : 6487202 : || DF_REF_IS_ARTIFICIAL (adef)
2088 : 6325462 : || (DF_REF_FLAGS (adef)
2089 : : & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
2090 : : return NULL_RTX;
2091 : :
2092 : 6325440 : rtx set = single_set (DF_REF_INSN (adef));
2093 : 6325440 : if (set == NULL || !rtx_equal_p (SET_DEST (set), reg))
2094 : 14031 : return NULL_RTX;
2095 : :
2096 : 6311409 : rtx note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
2097 : 6311409 : if (note && function_invariant_p (XEXP (note, 0)))
2098 : 162793 : return XEXP (note, 0);
2099 : 6148616 : src = SET_SRC (set);
2100 : :
2101 : 6148616 : if (REG_P (src))
2102 : : {
2103 : 821642 : reg = src;
2104 : 821642 : continue;
2105 : : }
2106 : : break;
2107 : : }
2108 : 5326982 : if (!function_invariant_p (src))
2109 : : return NULL_RTX;
2110 : :
2111 : : return src;
2112 : : }
2113 : :
2114 : :
2115 : : /*----------------------------------------------------------------------------
2116 : : Debugging and printing functions.
2117 : : ----------------------------------------------------------------------------*/
2118 : :
2119 : : /* Write information about registers and basic blocks into FILE.
2120 : : This is part of making a debugging dump. */
2121 : :
2122 : : void
2123 : 169 : dump_regset (regset r, FILE *outf)
2124 : : {
2125 : 169 : unsigned i;
2126 : 169 : reg_set_iterator rsi;
2127 : :
2128 : 169 : if (r == NULL)
2129 : : {
2130 : 0 : fputs (" (nil)", outf);
2131 : 0 : return;
2132 : : }
2133 : :
2134 : 1971 : EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2135 : : {
2136 : 1802 : fprintf (outf, " %d", i);
2137 : 1802 : if (i < FIRST_PSEUDO_REGISTER)
2138 : 1117 : fprintf (outf, " [%s]",
2139 : : reg_names[i]);
2140 : : }
2141 : : }
2142 : :
2143 : : /* Print a human-readable representation of R on the standard error
2144 : : stream. This function is designed to be used from within the
2145 : : debugger. */
2146 : : extern void debug_regset (regset);
2147 : : DEBUG_FUNCTION void
2148 : 0 : debug_regset (regset r)
2149 : : {
2150 : 0 : dump_regset (r, stderr);
2151 : 0 : putc ('\n', stderr);
2152 : 0 : }
2153 : :
2154 : : /* Write information about registers and basic blocks into FILE.
2155 : : This is part of making a debugging dump. */
2156 : :
2157 : : void
2158 : 63043 : df_print_regset (FILE *file, const_bitmap r)
2159 : : {
2160 : 63043 : unsigned int i;
2161 : 63043 : bitmap_iterator bi;
2162 : :
2163 : 63043 : if (r == NULL)
2164 : 0 : fputs (" (nil)", file);
2165 : : else
2166 : : {
2167 : 749384 : EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2168 : : {
2169 : 686341 : fprintf (file, " %d", i);
2170 : 686341 : if (i < FIRST_PSEUDO_REGISTER)
2171 : 624763 : fprintf (file, " [%s]", reg_names[i]);
2172 : : }
2173 : : }
2174 : 63043 : fprintf (file, "\n");
2175 : 63043 : }
2176 : :
2177 : :
2178 : : /* Write information about registers and basic blocks into FILE. The
2179 : : bitmap is in the form used by df_byte_lr. This is part of making a
2180 : : debugging dump. */
2181 : :
2182 : : void
2183 : 0 : df_print_word_regset (FILE *file, const_bitmap r)
2184 : : {
2185 : 0 : unsigned int max_reg = max_reg_num ();
2186 : :
2187 : 0 : if (r == NULL)
2188 : 0 : fputs (" (nil)", file);
2189 : : else
2190 : : {
2191 : : unsigned int i;
2192 : 0 : for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2193 : : {
2194 : 0 : bool found = (bitmap_bit_p (r, 2 * i)
2195 : 0 : || bitmap_bit_p (r, 2 * i + 1));
2196 : 0 : if (found)
2197 : : {
2198 : 0 : int word;
2199 : 0 : const char * sep = "";
2200 : 0 : fprintf (file, " %d", i);
2201 : 0 : fprintf (file, "(");
2202 : 0 : for (word = 0; word < 2; word++)
2203 : 0 : if (bitmap_bit_p (r, 2 * i + word))
2204 : : {
2205 : 0 : fprintf (file, "%s%d", sep, word);
2206 : 0 : sep = ", ";
2207 : : }
2208 : 0 : fprintf (file, ")");
2209 : : }
2210 : : }
2211 : : }
2212 : 0 : fprintf (file, "\n");
2213 : 0 : }
2214 : :
2215 : :
2216 : : /* Dump dataflow info. */
2217 : :
2218 : : void
2219 : 426 : df_dump (FILE *file)
2220 : : {
2221 : 426 : basic_block bb;
2222 : 426 : df_dump_start (file);
2223 : :
2224 : 4646 : FOR_ALL_BB_FN (bb, cfun)
2225 : : {
2226 : 4220 : df_print_bb_index (bb, file);
2227 : 4220 : df_dump_top (bb, file);
2228 : 4220 : df_dump_bottom (bb, file);
2229 : : }
2230 : :
2231 : 426 : fprintf (file, "\n");
2232 : 426 : }
2233 : :
2234 : :
2235 : : /* Dump dataflow info for df->blocks_to_analyze. */
2236 : :
2237 : : void
2238 : 195 : df_dump_region (FILE *file)
2239 : : {
2240 : 195 : if (df->blocks_to_analyze)
2241 : : {
2242 : 195 : bitmap_iterator bi;
2243 : 195 : unsigned int bb_index;
2244 : :
2245 : 195 : fprintf (file, "\n\nstarting region dump\n");
2246 : 195 : df_dump_start (file);
2247 : :
2248 : 605 : EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2249 : : {
2250 : 410 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2251 : 410 : dump_bb (file, bb, 0, TDF_DETAILS);
2252 : : }
2253 : 195 : fprintf (file, "\n");
2254 : : }
2255 : : else
2256 : 0 : df_dump (file);
2257 : 195 : }
2258 : :
2259 : :
2260 : : /* Dump the introductory information for each problem defined. */
2261 : :
2262 : : void
2263 : 3885 : df_dump_start (FILE *file)
2264 : : {
2265 : 3885 : int i;
2266 : :
2267 : 3885 : if (!df || !file)
2268 : : return;
2269 : :
2270 : 3885 : fprintf (file, "\n\n%s\n", current_function_name ());
2271 : 3885 : fprintf (file, "\nDataflow summary:\n");
2272 : 3885 : if (df->blocks_to_analyze)
2273 : 485 : fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2274 : : DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2275 : :
2276 : 18594 : for (i = 0; i < df->num_problems_defined; i++)
2277 : : {
2278 : 14709 : struct dataflow *dflow = df->problems_in_order[i];
2279 : 14709 : if (dflow->computed)
2280 : : {
2281 : 14042 : df_dump_problem_function fun = dflow->problem->dump_start_fun;
2282 : 14042 : if (fun)
2283 : 4102 : fun (file);
2284 : : }
2285 : : }
2286 : : }
2287 : :
2288 : :
2289 : : /* Dump the top or bottom of the block information for BB. */
2290 : : static void
2291 : 11080 : df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2292 : : {
2293 : 11080 : int i;
2294 : :
2295 : 11080 : if (!df || !file)
2296 : : return;
2297 : :
2298 : 59372 : for (i = 0; i < df->num_problems_defined; i++)
2299 : : {
2300 : 48292 : struct dataflow *dflow = df->problems_in_order[i];
2301 : 48292 : if (dflow->computed)
2302 : : {
2303 : 43696 : df_dump_bb_problem_function bbfun;
2304 : :
2305 : 43696 : if (top)
2306 : 21848 : bbfun = dflow->problem->dump_top_fun;
2307 : : else
2308 : 21848 : bbfun = dflow->problem->dump_bottom_fun;
2309 : :
2310 : 43696 : if (bbfun)
2311 : 27028 : bbfun (bb, file);
2312 : : }
2313 : : }
2314 : : }
2315 : :
2316 : : /* Dump the top of the block information for BB. */
2317 : :
2318 : : void
2319 : 5540 : df_dump_top (basic_block bb, FILE *file)
2320 : : {
2321 : 5540 : df_dump_bb_problem_data (bb, file, /*top=*/true);
2322 : 5540 : }
2323 : :
2324 : : /* Dump the bottom of the block information for BB. */
2325 : :
2326 : : void
2327 : 5540 : df_dump_bottom (basic_block bb, FILE *file)
2328 : : {
2329 : 5540 : df_dump_bb_problem_data (bb, file, /*top=*/false);
2330 : 5540 : }
2331 : :
2332 : :
2333 : : /* Dump information about INSN just before or after dumping INSN itself. */
2334 : : static void
2335 : 43646 : df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2336 : : {
2337 : 43646 : int i;
2338 : :
2339 : 43646 : if (!df || !file)
2340 : : return;
2341 : :
2342 : 161686 : for (i = 0; i < df->num_problems_defined; i++)
2343 : : {
2344 : 127452 : struct dataflow *dflow = df->problems_in_order[i];
2345 : 127452 : if (dflow->computed)
2346 : : {
2347 : 124740 : df_dump_insn_problem_function insnfun;
2348 : :
2349 : 124740 : if (top)
2350 : 62370 : insnfun = dflow->problem->dump_insn_top_fun;
2351 : : else
2352 : 62370 : insnfun = dflow->problem->dump_insn_bottom_fun;
2353 : :
2354 : 124740 : if (insnfun)
2355 : 4314 : insnfun (insn, file);
2356 : : }
2357 : : }
2358 : : }
2359 : :
2360 : : /* Dump information about INSN before dumping INSN itself. */
2361 : :
2362 : : void
2363 : 21823 : df_dump_insn_top (const rtx_insn *insn, FILE *file)
2364 : : {
2365 : 21823 : df_dump_insn_problem_data (insn, file, /*top=*/true);
2366 : 21823 : }
2367 : :
2368 : : /* Dump information about INSN after dumping INSN itself. */
2369 : :
2370 : : void
2371 : 21823 : df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2372 : : {
2373 : 21823 : df_dump_insn_problem_data (insn, file, /*top=*/false);
2374 : 21823 : }
2375 : :
2376 : :
2377 : : static void
2378 : 23848 : df_ref_dump (df_ref ref, FILE *file)
2379 : : {
2380 : 23848 : fprintf (file, "%c%d(%d)",
2381 : 23848 : DF_REF_REG_DEF_P (ref)
2382 : 15489 : ? 'd'
2383 : 15489 : : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2384 : : DF_REF_ID (ref),
2385 : : DF_REF_REGNO (ref));
2386 : 23848 : }
2387 : :
2388 : : void
2389 : 11080 : df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2390 : : {
2391 : 11080 : fprintf (file, "{ ");
2392 : 46008 : for (; ref; ref = DF_REF_NEXT_LOC (ref))
2393 : : {
2394 : 23848 : df_ref_dump (ref, file);
2395 : 23848 : if (follow_chain)
2396 : 23848 : df_chain_dump (DF_REF_CHAIN (ref), file);
2397 : : }
2398 : 11080 : fprintf (file, "}");
2399 : 11080 : }
2400 : :
2401 : :
2402 : : /* Dump either a ref-def or reg-use chain. */
2403 : :
2404 : : void
2405 : 0 : df_regs_chain_dump (df_ref ref, FILE *file)
2406 : : {
2407 : 0 : fprintf (file, "{ ");
2408 : 0 : while (ref)
2409 : : {
2410 : 0 : df_ref_dump (ref, file);
2411 : 0 : ref = DF_REF_NEXT_REG (ref);
2412 : : }
2413 : 0 : fprintf (file, "}");
2414 : 0 : }
2415 : :
2416 : :
2417 : : static void
2418 : 0 : df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2419 : : {
2420 : 0 : for (; mws; mws = DF_MWS_NEXT (mws))
2421 : 0 : fprintf (file, "mw %c r[%d..%d]\n",
2422 : 0 : DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2423 : : mws->start_regno, mws->end_regno);
2424 : 0 : }
2425 : :
2426 : :
2427 : : static void
2428 : 0 : df_insn_uid_debug (unsigned int uid,
2429 : : bool follow_chain, FILE *file)
2430 : : {
2431 : 0 : fprintf (file, "insn %d luid %d",
2432 : 0 : uid, DF_INSN_UID_LUID (uid));
2433 : :
2434 : 0 : if (DF_INSN_UID_DEFS (uid))
2435 : : {
2436 : 0 : fprintf (file, " defs ");
2437 : 0 : df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2438 : : }
2439 : :
2440 : 0 : if (DF_INSN_UID_USES (uid))
2441 : : {
2442 : 0 : fprintf (file, " uses ");
2443 : 0 : df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2444 : : }
2445 : :
2446 : 0 : if (DF_INSN_UID_EQ_USES (uid))
2447 : : {
2448 : 0 : fprintf (file, " eq uses ");
2449 : 0 : df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2450 : : }
2451 : :
2452 : 0 : if (DF_INSN_UID_MWS (uid))
2453 : : {
2454 : 0 : fprintf (file, " mws ");
2455 : 0 : df_mws_dump (DF_INSN_UID_MWS (uid), file);
2456 : : }
2457 : 0 : fprintf (file, "\n");
2458 : 0 : }
2459 : :
2460 : :
2461 : : DEBUG_FUNCTION void
2462 : 0 : df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2463 : : {
2464 : 0 : df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2465 : 0 : }
2466 : :
2467 : : DEBUG_FUNCTION void
2468 : 0 : df_insn_debug_regno (rtx_insn *insn, FILE *file)
2469 : : {
2470 : 0 : struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2471 : :
2472 : 0 : fprintf (file, "insn %d bb %d luid %d defs ",
2473 : 0 : INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2474 : : DF_INSN_INFO_LUID (insn_info));
2475 : 0 : df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2476 : :
2477 : 0 : fprintf (file, " uses ");
2478 : 0 : df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2479 : :
2480 : 0 : fprintf (file, " eq_uses ");
2481 : 0 : df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2482 : 0 : fprintf (file, "\n");
2483 : 0 : }
2484 : :
2485 : : DEBUG_FUNCTION void
2486 : 0 : df_regno_debug (unsigned int regno, FILE *file)
2487 : : {
2488 : 0 : fprintf (file, "reg %d defs ", regno);
2489 : 0 : df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2490 : 0 : fprintf (file, " uses ");
2491 : 0 : df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2492 : 0 : fprintf (file, " eq_uses ");
2493 : 0 : df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2494 : 0 : fprintf (file, "\n");
2495 : 0 : }
2496 : :
2497 : :
2498 : : DEBUG_FUNCTION void
2499 : 0 : df_ref_debug (df_ref ref, FILE *file)
2500 : : {
2501 : 0 : fprintf (file, "%c%d ",
2502 : 0 : DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2503 : : DF_REF_ID (ref));
2504 : 0 : fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2505 : : DF_REF_REGNO (ref),
2506 : 0 : DF_REF_BBNO (ref),
2507 : 0 : DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2508 : 0 : DF_REF_FLAGS (ref),
2509 : 0 : DF_REF_TYPE (ref));
2510 : 0 : if (DF_REF_LOC (ref))
2511 : : {
2512 : 0 : if (flag_dump_noaddr)
2513 : 0 : fprintf (file, "loc #(#) chain ");
2514 : : else
2515 : 0 : fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2516 : : (void *)*DF_REF_LOC (ref));
2517 : : }
2518 : : else
2519 : 0 : fprintf (file, "chain ");
2520 : 0 : df_chain_dump (DF_REF_CHAIN (ref), file);
2521 : 0 : fprintf (file, "\n");
2522 : 0 : }
2523 : :
2524 : : /* Functions for debugging from GDB. */
2525 : :
2526 : : DEBUG_FUNCTION void
2527 : 0 : debug_df_insn (rtx_insn *insn)
2528 : : {
2529 : 0 : df_insn_debug (insn, true, stderr);
2530 : 0 : debug_rtx (insn);
2531 : 0 : }
2532 : :
2533 : :
2534 : : DEBUG_FUNCTION void
2535 : 0 : debug_df_reg (rtx reg)
2536 : : {
2537 : 0 : df_regno_debug (REGNO (reg), stderr);
2538 : 0 : }
2539 : :
2540 : :
2541 : : DEBUG_FUNCTION void
2542 : 0 : debug_df_regno (unsigned int regno)
2543 : : {
2544 : 0 : df_regno_debug (regno, stderr);
2545 : 0 : }
2546 : :
2547 : :
2548 : : DEBUG_FUNCTION void
2549 : 0 : debug_df_ref (df_ref ref)
2550 : : {
2551 : 0 : df_ref_debug (ref, stderr);
2552 : 0 : }
2553 : :
2554 : :
2555 : : DEBUG_FUNCTION void
2556 : 0 : debug_df_defno (unsigned int defno)
2557 : : {
2558 : 0 : df_ref_debug (DF_DEFS_GET (defno), stderr);
2559 : 0 : }
2560 : :
2561 : :
2562 : : DEBUG_FUNCTION void
2563 : 0 : debug_df_useno (unsigned int defno)
2564 : : {
2565 : 0 : df_ref_debug (DF_USES_GET (defno), stderr);
2566 : 0 : }
2567 : :
2568 : :
2569 : : DEBUG_FUNCTION void
2570 : 0 : debug_df_chain (struct df_link *link)
2571 : : {
2572 : 0 : df_chain_dump (link, stderr);
2573 : 0 : fputc ('\n', stderr);
2574 : 0 : }
|