Branch data Line data Source code
1 : : /* Allocation for dataflow support routines.
2 : : Copyright (C) 1999-2024 Free Software Foundation, Inc.
3 : : Originally contributed by Michael P. Hayes
4 : : (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 : : Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 : : and Kenneth Zadeck (zadeck@naturalbridge.com).
7 : :
8 : : This file is part of GCC.
9 : :
10 : : GCC is free software; you can redistribute it and/or modify it under
11 : : the terms of the GNU General Public License as published by the Free
12 : : Software Foundation; either version 3, or (at your option) any later
13 : : version.
14 : :
15 : : GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 : : WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 : : FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 : : for more details.
19 : :
20 : : You should have received a copy of the GNU General Public License
21 : : along with GCC; see the file COPYING3. If not see
22 : : <http://www.gnu.org/licenses/>. */
23 : :
24 : : /*
25 : : OVERVIEW:
26 : :
27 : : The files in this collection (df*.c,df.h) provide a general framework
28 : : for solving dataflow problems. The global dataflow is performed using
29 : : a good implementation of iterative dataflow analysis.
30 : :
31 : : The file df-problems.cc provides problem instance for the most common
32 : : dataflow problems: reaching defs, upward exposed uses, live variables,
33 : : uninitialized variables, def-use chains, and use-def chains. However,
34 : : the interface allows other dataflow problems to be defined as well.
35 : :
36 : : Dataflow analysis is available in most of the rtl backend (the parts
37 : : between pass_df_initialize and pass_df_finish). It is quite likely
38 : : that these boundaries will be expanded in the future. The only
39 : : requirement is that there be a correct control flow graph.
40 : :
41 : : There are three variations of the live variable problem that are
42 : : available whenever dataflow is available. The LR problem finds the
43 : : areas that can reach a use of a variable, the UR problems finds the
44 : : areas that can be reached from a definition of a variable. The LIVE
45 : : problem finds the intersection of these two areas.
46 : :
47 : : There are several optional problems. These can be enabled when they
48 : : are needed and disabled when they are not needed.
49 : :
50 : : Dataflow problems are generally solved in three layers. The bottom
51 : : layer is called scanning where a data structure is built for each rtl
52 : : insn that describes the set of defs and uses of that insn. Scanning
53 : : is generally kept up to date, i.e. as the insns changes, the scanned
54 : : version of that insn changes also. There are various mechanisms for
55 : : making this happen and are described in the INCREMENTAL SCANNING
56 : : section.
57 : :
58 : : In the middle layer, basic blocks are scanned to produce transfer
59 : : functions which describe the effects of that block on the global
60 : : dataflow solution. The transfer functions are only rebuilt if the
61 : : some instruction within the block has changed.
62 : :
63 : : The top layer is the dataflow solution itself. The dataflow solution
64 : : is computed by using an efficient iterative solver and the transfer
65 : : functions. The dataflow solution must be recomputed whenever the
66 : : control changes or if one of the transfer function changes.
67 : :
68 : :
69 : : USAGE:
70 : :
71 : : Here is an example of using the dataflow routines.
72 : :
73 : : df_[chain,live,note,rd]_add_problem (flags);
74 : :
75 : : df_set_blocks (blocks);
76 : :
77 : : df_analyze ();
78 : :
79 : : df_dump (stderr);
80 : :
81 : : df_finish_pass (false);
82 : :
83 : : DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 : : instance to struct df_problem, to the set of problems solved in this
85 : : instance of df. All calls to add a problem for a given instance of df
86 : : must occur before the first call to DF_ANALYZE.
87 : :
88 : : Problems can be dependent on other problems. For instance, solving
89 : : def-use or use-def chains is dependent on solving reaching
90 : : definitions. As long as these dependencies are listed in the problem
91 : : definition, the order of adding the problems is not material.
92 : : Otherwise, the problems will be solved in the order of calls to
93 : : df_add_problem. Note that it is not necessary to have a problem. In
94 : : that case, df will just be used to do the scanning.
95 : :
96 : :
97 : :
98 : : DF_SET_BLOCKS is an optional call used to define a region of the
99 : : function on which the analysis will be performed. The normal case is
100 : : to analyze the entire function and no call to df_set_blocks is made.
101 : : DF_SET_BLOCKS only effects the blocks that are effected when computing
102 : : the transfer functions and final solution. The insn level information
103 : : is always kept up to date.
104 : :
105 : : When a subset is given, the analysis behaves as if the function only
106 : : contains those blocks and any edges that occur directly between the
107 : : blocks in the set. Care should be taken to call df_set_blocks right
108 : : before the call to analyze in order to eliminate the possibility that
109 : : optimizations that reorder blocks invalidate the bitvector.
110 : :
111 : : DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 : : DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 : : contain the computer information. The DF_*_BB_INFO macros can be used
114 : : to access these bitvectors. All deferred rescannings are down before
115 : : the transfer functions are recomputed.
116 : :
117 : : DF_DUMP can then be called to dump the information produce to some
118 : : file. This calls DF_DUMP_START, to print the information that is not
119 : : basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 : : for each block to print the basic specific information. These parts
121 : : can all be called separately as part of a larger dump function.
122 : :
123 : :
124 : : DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 : : optional problems. It also causes any insns whose scanning has been
126 : : deferred to be rescanned as well as clears all of the changeable flags.
127 : : Setting the pass manager TODO_df_finish flag causes this function to
128 : : be run. However, the pass manager will call df_finish_pass AFTER the
129 : : pass dumping has been done, so if you want to see the results of the
130 : : optional problems in the pass dumps, use the TODO flag rather than
131 : : calling the function yourself.
132 : :
133 : : INCREMENTAL SCANNING
134 : :
135 : : There are four ways of doing the incremental scanning:
136 : :
137 : : 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 : : df_bb_delete, df_insn_change_bb have been added to most of
139 : : the low level service functions that maintain the cfg and change
140 : : rtl. Calling and of these routines many cause some number of insns
141 : : to be rescanned.
142 : :
143 : : For most modern rtl passes, this is certainly the easiest way to
144 : : manage rescanning the insns. This technique also has the advantage
145 : : that the scanning information is always correct and can be relied
146 : : upon even after changes have been made to the instructions. This
147 : : technique is contra indicated in several cases:
148 : :
149 : : a) If def-use chains OR use-def chains (but not both) are built,
150 : : using this is SIMPLY WRONG. The problem is that when a ref is
151 : : deleted that is the target of an edge, there is not enough
152 : : information to efficiently find the source of the edge and
153 : : delete the edge. This leaves a dangling reference that may
154 : : cause problems.
155 : :
156 : : b) If def-use chains AND use-def chains are built, this may
157 : : produce unexpected results. The problem is that the incremental
158 : : scanning of an insn does not know how to repair the chains that
159 : : point into an insn when the insn changes. So the incremental
160 : : scanning just deletes the chains that enter and exit the insn
161 : : being changed. The dangling reference issue in (a) is not a
162 : : problem here, but if the pass is depending on the chains being
163 : : maintained after insns have been modified, this technique will
164 : : not do the correct thing.
165 : :
166 : : c) If the pass modifies insns several times, this incremental
167 : : updating may be expensive.
168 : :
169 : : d) If the pass modifies all of the insns, as does register
170 : : allocation, it is simply better to rescan the entire function.
171 : :
172 : : 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 : : df_insn_delete do not immediately change the insn but instead make
174 : : a note that the insn needs to be rescanned. The next call to
175 : : df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 : : cause all of the pending rescans to be processed.
177 : :
178 : : This is the technique of choice if either 1a, 1b, or 1c are issues
179 : : in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 : : (either manually or via TODO_df_finish) should be made before the
181 : : next call to df_analyze or df_process_deferred_rescans.
182 : :
183 : : This mode is also used by a few passes that still rely on note_uses,
184 : : note_stores and rtx iterators instead of using the DF data. This
185 : : can be said to fall under case 1c.
186 : :
187 : : To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 : : (This mode can be cleared by calling df_clear_flags
189 : : (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 : : be rescanned.
191 : :
192 : : 3) Total rescanning - In this mode the rescanning is disabled.
193 : : Only when insns are deleted is the df information associated with
194 : : it also deleted. At the end of the pass, a call must be made to
195 : : df_insn_rescan_all. This method is used by the register allocator
196 : : since it generally changes each insn multiple times (once for each ref)
197 : : and does not need to make use of the updated scanning information.
198 : :
199 : : 4) Do it yourself - In this mechanism, the pass updates the insns
200 : : itself using the low level df primitives. Currently no pass does
201 : : this, but it has the advantage that it is quite efficient given
202 : : that the pass generally has exact knowledge of what it is changing.
203 : :
204 : : DATA STRUCTURES
205 : :
206 : : Scanning produces a `struct df_ref' data structure (ref) is allocated
207 : : for every register reference (def or use) and this records the insn
208 : : and bb the ref is found within. The refs are linked together in
209 : : chains of uses and defs for each insn and for each register. Each ref
210 : : also has a chain field that links all the use refs for a def or all
211 : : the def refs for a use. This is used to create use-def or def-use
212 : : chains.
213 : :
214 : : Different optimizations have different needs. Ultimately, only
215 : : register allocation and schedulers should be using the bitmaps
216 : : produced for the live register and uninitialized register problems.
217 : : The rest of the backend should be upgraded to using and maintaining
218 : : the linked information such as def use or use def chains.
219 : :
220 : :
221 : : PHILOSOPHY:
222 : :
223 : : While incremental bitmaps are not worthwhile to maintain, incremental
224 : : chains may be perfectly reasonable. The fastest way to build chains
225 : : from scratch or after significant modifications is to build reaching
226 : : definitions (RD) and build the chains from this.
227 : :
228 : : However, general algorithms for maintaining use-def or def-use chains
229 : : are not practical. The amount of work to recompute the chain any
230 : : chain after an arbitrary change is large. However, with a modest
231 : : amount of work it is generally possible to have the application that
232 : : uses the chains keep them up to date. The high level knowledge of
233 : : what is really happening is essential to crafting efficient
234 : : incremental algorithms.
235 : :
236 : : As for the bit vector problems, there is no interface to give a set of
237 : : blocks over with to resolve the iteration. In general, restarting a
238 : : dataflow iteration is difficult and expensive. Again, the best way to
239 : : keep the dataflow information up to data (if this is really what is
240 : : needed) it to formulate a problem specific solution.
241 : :
242 : : There are fine grained calls for creating and deleting references from
243 : : instructions in df-scan.cc. However, these are not currently connected
244 : : to the engine that resolves the dataflow equations.
245 : :
246 : :
247 : : DATA STRUCTURES:
248 : :
249 : : The basic object is a DF_REF (reference) and this may either be a
250 : : DEF (definition) or a USE of a register.
251 : :
252 : : These are linked into a variety of lists; namely reg-def, reg-use,
253 : : insn-def, insn-use, def-use, and use-def lists. For example, the
254 : : reg-def lists contain all the locations that define a given register
255 : : while the insn-use lists contain all the locations that use a
256 : : register.
257 : :
258 : : Note that the reg-def and reg-use chains are generally short for
259 : : pseudos and long for the hard registers.
260 : :
261 : : ACCESSING INSNS:
262 : :
263 : : 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 : : The array is indexed by insn uid, and every DF_REF points to the
265 : : DF_INSN_INFO object of the insn that contains the reference.
266 : :
267 : : 2) Each insn has three sets of refs, which are linked into one of three
268 : : lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 : : DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 : : (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 : : DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 : : DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 : : The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 : : notes. These macros produce a ref (or NULL), the rest of the list
275 : : can be obtained by traversal of the NEXT_REF field (accessed by the
276 : : DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 : : the uses or refs in an instruction.
278 : :
279 : : 3) Each insn has a logical uid field (LUID) which is stored in the
280 : : DF_INSN_INFO object for the insn. The LUID field is accessed by
281 : : the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 : : When properly set, the LUID is an integer that numbers each insn in
283 : : the basic block, in order from the start of the block.
284 : : The numbers are only correct after a call to df_analyze. They will
285 : : rot after insns are added deleted or moved round.
286 : :
287 : : ACCESSING REFS:
288 : :
289 : : There are 4 ways to obtain access to refs:
290 : :
291 : : 1) References are divided into two categories, REAL and ARTIFICIAL.
292 : :
293 : : REAL refs are associated with instructions.
294 : :
295 : : ARTIFICIAL refs are associated with basic blocks. The heads of
296 : : these lists can be accessed by calling df_get_artificial_defs or
297 : : df_get_artificial_uses for the particular basic block.
298 : :
299 : : Artificial defs and uses occur both at the beginning and ends of blocks.
300 : :
301 : : For blocks that are at the destination of eh edges, the
302 : : artificial uses and defs occur at the beginning. The defs relate
303 : : to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 : : relate to the registers specified in EH_USES. Logically these
305 : : defs and uses should really occur along the eh edge, but there is
306 : : no convenient way to do this. Artificial defs that occur at the
307 : : beginning of the block have the DF_REF_AT_TOP flag set.
308 : :
309 : : Artificial uses occur at the end of all blocks. These arise from
310 : : the hard registers that are always live, such as the stack
311 : : register and are put there to keep the code from forgetting about
312 : : them.
313 : :
314 : : Artificial defs occur at the end of the entry block. These arise
315 : : from registers that are live at entry to the function.
316 : :
317 : : 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 : : uses that appear inside a REG_EQUAL or REG_EQUIV note.)
319 : :
320 : : All of the eq_uses, uses and defs associated with each pseudo or
321 : : hard register may be linked in a bidirectional chain. These are
322 : : called reg-use or reg_def chains. If the changeable flag
323 : : DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 : : treated like uses. If it is not set they are ignored.
325 : :
326 : : The first use, eq_use or def for a register can be obtained using
327 : : the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 : : macros. Subsequent uses for the same regno can be obtained by
329 : : following the next_reg field of the ref. The number of elements in
330 : : each of the chains can be found by using the DF_REG_USE_COUNT,
331 : : DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
332 : :
333 : : In previous versions of this code, these chains were ordered. It
334 : : has not been practical to continue this practice.
335 : :
336 : : 3) If def-use or use-def chains are built, these can be traversed to
337 : : get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 : : include the eq_uses. Otherwise these are ignored when building the
339 : : chains.
340 : :
341 : : 4) An array of all of the uses (and an array of all of the defs) can
342 : : be built. These arrays are indexed by the value in the id
343 : : structure. These arrays are only lazily kept up to date, and that
344 : : process can be expensive. To have these arrays built, call
345 : : df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 : : has been set the array will contain the eq_uses. Otherwise these
347 : : are ignored when building the array and assigning the ids. Note
348 : : that the values in the id field of a ref may change across calls to
349 : : df_analyze or df_reorganize_defs or df_reorganize_uses.
350 : :
351 : : If the only use of this array is to find all of the refs, it is
352 : : better to traverse all of the registers and then traverse all of
353 : : reg-use or reg-def chains.
354 : :
355 : : NOTES:
356 : :
357 : : Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 : : both a use and a def. These are both marked read/write to show that they
359 : : are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 : : will generate a use of reg 42 followed by a def of reg 42 (both marked
361 : : read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 : : generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 : : even though reg 41 is decremented before it is used for the memory
364 : : address in this second example.
365 : :
366 : : A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 : : for which the number of word_mode units covered by the outer mode is
368 : : smaller than that covered by the inner mode, invokes a read-modify-write
369 : : operation. We generate both a use and a def and again mark them
370 : : read/write.
371 : :
372 : : Paradoxical subreg writes do not leave a trace of the old content, so they
373 : : are write-only operations.
374 : : */
375 : :
376 : :
377 : : #include "config.h"
378 : : #include "system.h"
379 : : #include "coretypes.h"
380 : : #include "backend.h"
381 : : #include "rtl.h"
382 : : #include "df.h"
383 : : #include "memmodel.h"
384 : : #include "emit-rtl.h"
385 : : #include "cfganal.h"
386 : : #include "tree-pass.h"
387 : : #include "cfgloop.h"
388 : :
389 : : static void *df_get_bb_info (struct dataflow *, unsigned int);
390 : : static void df_set_bb_info (struct dataflow *, unsigned int, void *);
391 : : static void df_clear_bb_info (struct dataflow *, unsigned int);
392 : : #ifdef DF_DEBUG_CFG
393 : : static void df_set_clean_cfg (void);
394 : : #endif
395 : :
396 : : /* The obstack on which regsets are allocated. */
397 : : struct bitmap_obstack reg_obstack;
398 : :
399 : : /* An obstack for bitmap not related to specific dataflow problems.
400 : : This obstack should e.g. be used for bitmaps with a short life time
401 : : such as temporary bitmaps. */
402 : :
403 : : bitmap_obstack df_bitmap_obstack;
404 : :
405 : :
406 : : /*----------------------------------------------------------------------------
407 : : Functions to create, destroy and manipulate an instance of df.
408 : : ----------------------------------------------------------------------------*/
409 : :
410 : : class df_d *df;
411 : :
412 : : /* Add PROBLEM (and any dependent problems) to the DF instance. */
413 : :
414 : : void
415 : 46175360 : df_add_problem (const struct df_problem *problem)
416 : : {
417 : 46175360 : struct dataflow *dflow;
418 : 46175360 : int i;
419 : :
420 : : /* First try to add the dependent problem. */
421 : 46175360 : if (problem->dependent_problem)
422 : 21785044 : df_add_problem (problem->dependent_problem);
423 : :
424 : : /* Check to see if this problem has already been defined. If it
425 : : has, just return that instance, if not, add it to the end of the
426 : : vector. */
427 : 46175360 : dflow = df->problems_by_index[problem->id];
428 : 46175360 : if (dflow)
429 : : return;
430 : :
431 : : /* Make a new one and add it to the end. */
432 : 30592399 : dflow = XCNEW (struct dataflow);
433 : 30592399 : dflow->problem = problem;
434 : 30592399 : dflow->computed = false;
435 : 30592399 : dflow->solutions_dirty = true;
436 : 30592399 : df->problems_by_index[dflow->problem->id] = dflow;
437 : :
438 : : /* Keep the defined problems ordered by index. This solves the
439 : : problem that RI will use the information from UREC if UREC has
440 : : been defined, or from LIVE if LIVE is defined and otherwise LR.
441 : : However for this to work, the computation of RI must be pushed
442 : : after which ever of those problems is defined, but we do not
443 : : require any of those except for LR to have actually been
444 : : defined. */
445 : 30592399 : df->num_problems_defined++;
446 : 31069312 : for (i = df->num_problems_defined - 2; i >= 0; i--)
447 : : {
448 : 29582608 : if (problem->id < df->problems_in_order[i]->problem->id)
449 : 476913 : df->problems_in_order[i+1] = df->problems_in_order[i];
450 : : else
451 : : {
452 : 29105695 : df->problems_in_order[i+1] = dflow;
453 : 29105695 : return;
454 : : }
455 : : }
456 : 1486704 : df->problems_in_order[0] = dflow;
457 : : }
458 : :
459 : :
460 : : /* Set the MASK flags in the DFLOW problem. The old flags are
461 : : returned. If a flag is not allowed to be changed this will fail if
462 : : checking is enabled. */
463 : : int
464 : 49963729 : df_set_flags (int changeable_flags)
465 : : {
466 : 49963729 : int old_flags = df->changeable_flags;
467 : 49963729 : df->changeable_flags |= changeable_flags;
468 : 49963729 : return old_flags;
469 : : }
470 : :
471 : :
472 : : /* Clear the MASK flags in the DFLOW problem. The old flags are
473 : : returned. If a flag is not allowed to be changed this will fail if
474 : : checking is enabled. */
475 : : int
476 : 27655580 : df_clear_flags (int changeable_flags)
477 : : {
478 : 27655580 : int old_flags = df->changeable_flags;
479 : 27655580 : df->changeable_flags &= ~changeable_flags;
480 : 27655580 : return old_flags;
481 : : }
482 : :
483 : :
484 : : /* Set the blocks that are to be considered for analysis. If this is
485 : : not called or is called with null, the entire function in
486 : : analyzed. */
487 : :
488 : : void
489 : 1444676 : df_set_blocks (bitmap blocks)
490 : : {
491 : 1444676 : if (blocks)
492 : : {
493 : 1444676 : if (dump_file)
494 : 195 : bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
495 : 1444676 : if (df->blocks_to_analyze)
496 : : {
497 : : /* This block is called to change the focus from one subset
498 : : to another. */
499 : 982122 : int p;
500 : 982122 : auto_bitmap diff (&df_bitmap_obstack);
501 : 982122 : bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
502 : 7351098 : for (p = 0; p < df->num_problems_defined; p++)
503 : : {
504 : 6368976 : struct dataflow *dflow = df->problems_in_order[p];
505 : 6368976 : if (dflow->optional_p && dflow->problem->reset_fun)
506 : 43534 : dflow->problem->reset_fun (df->blocks_to_analyze);
507 : 6325442 : else if (dflow->problem->free_blocks_on_set_blocks)
508 : : {
509 : 982122 : bitmap_iterator bi;
510 : 982122 : unsigned int bb_index;
511 : :
512 : 4569831 : EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
513 : : {
514 : 3587709 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
515 : 3587709 : if (bb)
516 : : {
517 : 7175418 : void *bb_info = df_get_bb_info (dflow, bb_index);
518 : 3587709 : dflow->problem->free_bb_fun (bb, bb_info);
519 : 3587709 : df_clear_bb_info (dflow, bb_index);
520 : : }
521 : : }
522 : : }
523 : : }
524 : 982122 : }
525 : : else
526 : : {
527 : : /* This block of code is executed to change the focus from
528 : : the entire function to a subset. */
529 : 462554 : bitmap_head blocks_to_reset;
530 : 462554 : bool initialized = false;
531 : 462554 : int p;
532 : 3450705 : for (p = 0; p < df->num_problems_defined; p++)
533 : : {
534 : 2988151 : struct dataflow *dflow = df->problems_in_order[p];
535 : 2988151 : if (dflow->optional_p && dflow->problem->reset_fun)
536 : : {
537 : 0 : if (!initialized)
538 : : {
539 : 0 : basic_block bb;
540 : 0 : bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
541 : 0 : FOR_ALL_BB_FN (bb, cfun)
542 : : {
543 : 0 : bitmap_set_bit (&blocks_to_reset, bb->index);
544 : : }
545 : : }
546 : 0 : dflow->problem->reset_fun (&blocks_to_reset);
547 : : }
548 : : }
549 : 462554 : if (initialized)
550 : : bitmap_clear (&blocks_to_reset);
551 : :
552 : 462554 : df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
553 : : }
554 : 1444676 : bitmap_copy (df->blocks_to_analyze, blocks);
555 : 1444676 : df->analyze_subset = true;
556 : : }
557 : : else
558 : : {
559 : : /* This block is executed to reset the focus to the entire
560 : : function. */
561 : 0 : if (dump_file)
562 : 0 : fprintf (dump_file, "clearing blocks_to_analyze\n");
563 : 0 : if (df->blocks_to_analyze)
564 : : {
565 : 0 : BITMAP_FREE (df->blocks_to_analyze);
566 : 0 : df->blocks_to_analyze = NULL;
567 : : }
568 : 0 : df->analyze_subset = false;
569 : : }
570 : :
571 : : /* Setting the blocks causes the refs to be unorganized since only
572 : : the refs in the blocks are seen. */
573 : 1444676 : df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
574 : 1444676 : df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
575 : 1444676 : df_mark_solutions_dirty ();
576 : 1444676 : }
577 : :
578 : :
579 : : /* Delete a DFLOW problem (and any problems that depend on this
580 : : problem). */
581 : :
582 : : void
583 : 25376294 : df_remove_problem (struct dataflow *dflow)
584 : : {
585 : 25376294 : const struct df_problem *problem;
586 : 25376294 : int i;
587 : :
588 : 25376294 : if (!dflow)
589 : : return;
590 : :
591 : 25163341 : problem = dflow->problem;
592 : 25163341 : gcc_assert (problem->remove_problem_fun);
593 : :
594 : : /* Delete any problems that depended on this problem first. */
595 : 160430112 : for (i = 0; i < df->num_problems_defined; i++)
596 : 135266771 : if (df->problems_in_order[i]->problem->dependent_problem == problem)
597 : 3973714 : df_remove_problem (df->problems_in_order[i]);
598 : :
599 : : /* Now remove this problem. */
600 : 128644541 : for (i = 0; i < df->num_problems_defined; i++)
601 : 128644541 : if (df->problems_in_order[i] == dflow)
602 : : {
603 : 25163341 : int j;
604 : 28993869 : for (j = i + 1; j < df->num_problems_defined; j++)
605 : 3830528 : df->problems_in_order[j-1] = df->problems_in_order[j];
606 : 25163341 : df->problems_in_order[j-1] = NULL;
607 : 25163341 : df->num_problems_defined--;
608 : 25163341 : break;
609 : : }
610 : :
611 : 25163341 : (problem->remove_problem_fun) ();
612 : 25163341 : df->problems_by_index[problem->id] = NULL;
613 : : }
614 : :
615 : :
616 : : /* Remove all of the problems that are not permanent. Scanning, LR
617 : : and (at -O2 or higher) LIVE are permanent, the rest are removable.
618 : : Also clear all of the changeable_flags. */
619 : :
620 : : void
621 : 39383693 : df_finish_pass (bool verify ATTRIBUTE_UNUSED)
622 : : {
623 : 39383693 : int i;
624 : :
625 : : #ifdef ENABLE_DF_CHECKING
626 : : int saved_flags;
627 : : #endif
628 : :
629 : 39383693 : if (!df)
630 : : return;
631 : :
632 : 39383692 : df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
633 : 39383692 : df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
634 : :
635 : : #ifdef ENABLE_DF_CHECKING
636 : : saved_flags = df->changeable_flags;
637 : : #endif
638 : :
639 : : /* We iterate over problems by index as each problem removed will
640 : : lead to problems_in_order to be reordered. */
641 : 433220612 : for (i = 0; i < DF_LAST_PROBLEM_PLUS1; i++)
642 : : {
643 : 393836920 : struct dataflow *dflow = df->problems_by_index[i];
644 : :
645 : 393836920 : if (dflow && dflow->optional_p)
646 : 17600766 : df_remove_problem (dflow);
647 : : }
648 : :
649 : : /* Clear all of the flags. */
650 : 39383692 : df->changeable_flags = 0;
651 : 39383692 : df_process_deferred_rescans ();
652 : :
653 : : /* Set the focus back to the whole function. */
654 : 39383692 : if (df->blocks_to_analyze)
655 : : {
656 : 462554 : BITMAP_FREE (df->blocks_to_analyze);
657 : 462554 : df->blocks_to_analyze = NULL;
658 : 462554 : df_mark_solutions_dirty ();
659 : 462554 : df->analyze_subset = false;
660 : : }
661 : :
662 : : #ifdef ENABLE_DF_CHECKING
663 : : /* Verification will fail in DF_NO_INSN_RESCAN. */
664 : : if (!(saved_flags & DF_NO_INSN_RESCAN))
665 : : {
666 : : df_lr_verify_transfer_functions ();
667 : : if (df_live)
668 : : df_live_verify_transfer_functions ();
669 : : }
670 : :
671 : : #ifdef DF_DEBUG_CFG
672 : : df_set_clean_cfg ();
673 : : #endif
674 : : #endif
675 : :
676 : 39383692 : if (flag_checking && verify)
677 : 5422025 : df->changeable_flags |= DF_VERIFY_SCHEDULED;
678 : : }
679 : :
680 : :
681 : : /* Set up the dataflow instance for the entire back end. */
682 : :
683 : : static unsigned int
684 : 1486704 : rest_of_handle_df_initialize (void)
685 : : {
686 : 1486704 : gcc_assert (!df);
687 : 1486704 : df = XCNEW (class df_d);
688 : 1486704 : df->changeable_flags = 0;
689 : :
690 : 1486704 : bitmap_obstack_initialize (&df_bitmap_obstack);
691 : :
692 : : /* Set this to a conservative value. Stack_ptr_mod will compute it
693 : : correctly later. */
694 : 1486704 : crtl->sp_is_unchanging = 0;
695 : :
696 : 1486704 : df_scan_add_problem ();
697 : 1486704 : df_scan_alloc (NULL);
698 : :
699 : : /* These three problems are permanent. */
700 : 1486704 : df_lr_add_problem ();
701 : 1486704 : if (optimize > 1)
702 : 968946 : df_live_add_problem ();
703 : :
704 : 1486704 : df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
705 : :
706 : 1486704 : df_hard_reg_init ();
707 : : /* After reload, some ports add certain bits to regs_ever_live so
708 : : this cannot be reset. */
709 : 1486704 : df_compute_regs_ever_live (true);
710 : 1486704 : df_scan_blocks ();
711 : 1486704 : df_compute_regs_ever_live (false);
712 : 1486704 : return 0;
713 : : }
714 : :
715 : :
716 : : namespace {
717 : :
718 : : const pass_data pass_data_df_initialize_opt =
719 : : {
720 : : RTL_PASS, /* type */
721 : : "dfinit", /* name */
722 : : OPTGROUP_NONE, /* optinfo_flags */
723 : : TV_DF_SCAN, /* tv_id */
724 : : 0, /* properties_required */
725 : : 0, /* properties_provided */
726 : : 0, /* properties_destroyed */
727 : : 0, /* todo_flags_start */
728 : : 0, /* todo_flags_finish */
729 : : };
730 : :
731 : : class pass_df_initialize_opt : public rtl_opt_pass
732 : : {
733 : : public:
734 : 281608 : pass_df_initialize_opt (gcc::context *ctxt)
735 : 563216 : : rtl_opt_pass (pass_data_df_initialize_opt, ctxt)
736 : : {}
737 : :
738 : : /* opt_pass methods: */
739 : 1486709 : bool gate (function *) final override { return optimize > 0; }
740 : 1051273 : unsigned int execute (function *) final override
741 : : {
742 : 1051273 : return rest_of_handle_df_initialize ();
743 : : }
744 : :
745 : : }; // class pass_df_initialize_opt
746 : :
747 : : } // anon namespace
748 : :
749 : : rtl_opt_pass *
750 : 281608 : make_pass_df_initialize_opt (gcc::context *ctxt)
751 : : {
752 : 281608 : return new pass_df_initialize_opt (ctxt);
753 : : }
754 : :
755 : :
756 : : namespace {
757 : :
758 : : const pass_data pass_data_df_initialize_no_opt =
759 : : {
760 : : RTL_PASS, /* type */
761 : : "no-opt dfinit", /* name */
762 : : OPTGROUP_NONE, /* optinfo_flags */
763 : : TV_DF_SCAN, /* tv_id */
764 : : 0, /* properties_required */
765 : : 0, /* properties_provided */
766 : : 0, /* properties_destroyed */
767 : : 0, /* todo_flags_start */
768 : : 0, /* todo_flags_finish */
769 : : };
770 : :
771 : : class pass_df_initialize_no_opt : public rtl_opt_pass
772 : : {
773 : : public:
774 : 281608 : pass_df_initialize_no_opt (gcc::context *ctxt)
775 : 563216 : : rtl_opt_pass (pass_data_df_initialize_no_opt, ctxt)
776 : : {}
777 : :
778 : : /* opt_pass methods: */
779 : 1486709 : bool gate (function *) final override { return optimize == 0; }
780 : 435431 : unsigned int execute (function *) final override
781 : : {
782 : 435431 : return rest_of_handle_df_initialize ();
783 : : }
784 : :
785 : : }; // class pass_df_initialize_no_opt
786 : :
787 : : } // anon namespace
788 : :
789 : : rtl_opt_pass *
790 : 281608 : make_pass_df_initialize_no_opt (gcc::context *ctxt)
791 : : {
792 : 281608 : return new pass_df_initialize_no_opt (ctxt);
793 : : }
794 : :
795 : :
796 : : /* Free all the dataflow info and the DF structure. This should be
797 : : called from the df_finish macro which also NULLs the parm. */
798 : :
799 : : static unsigned int
800 : 1486704 : rest_of_handle_df_finish (void)
801 : : {
802 : 1486704 : int i;
803 : :
804 : 1486704 : gcc_assert (df);
805 : :
806 : 6915762 : for (i = 0; i < df->num_problems_defined; i++)
807 : : {
808 : 5429058 : struct dataflow *dflow = df->problems_in_order[i];
809 : 5429058 : if (dflow->problem->free_fun)
810 : 3942354 : dflow->problem->free_fun ();
811 : : }
812 : :
813 : 1486704 : free (df->postorder);
814 : 1486704 : free (df->postorder_inverted);
815 : 1486704 : free (df->hard_regs_live_count);
816 : 1486704 : free (df);
817 : 1486704 : df = NULL;
818 : :
819 : 1486704 : bitmap_obstack_release (&df_bitmap_obstack);
820 : 1486704 : return 0;
821 : : }
822 : :
823 : :
824 : : namespace {
825 : :
826 : : const pass_data pass_data_df_finish =
827 : : {
828 : : RTL_PASS, /* type */
829 : : "dfinish", /* name */
830 : : OPTGROUP_NONE, /* optinfo_flags */
831 : : TV_NONE, /* tv_id */
832 : : 0, /* properties_required */
833 : : 0, /* properties_provided */
834 : : 0, /* properties_destroyed */
835 : : 0, /* todo_flags_start */
836 : : 0, /* todo_flags_finish */
837 : : };
838 : :
839 : : class pass_df_finish : public rtl_opt_pass
840 : : {
841 : : public:
842 : 281608 : pass_df_finish (gcc::context *ctxt)
843 : 563216 : : rtl_opt_pass (pass_data_df_finish, ctxt)
844 : : {}
845 : :
846 : : /* opt_pass methods: */
847 : 1486704 : unsigned int execute (function *) final override
848 : : {
849 : 1486704 : return rest_of_handle_df_finish ();
850 : : }
851 : :
852 : : }; // class pass_df_finish
853 : :
854 : : } // anon namespace
855 : :
856 : : rtl_opt_pass *
857 : 281608 : make_pass_df_finish (gcc::context *ctxt)
858 : : {
859 : 281608 : return new pass_df_finish (ctxt);
860 : : }
861 : :
862 : :
863 : :
864 : :
865 : :
866 : : /*----------------------------------------------------------------------------
867 : : The general data flow analysis engine.
868 : : ----------------------------------------------------------------------------*/
869 : :
870 : : /* Helper function for df_worklist_dataflow.
871 : : Propagate the dataflow forward.
872 : : Given a BB_INDEX, do the dataflow propagation
873 : : and set bits on for successors in PENDING for earlier
874 : : and WORKLIST for later in bbindex_to_postorder
875 : : if the out set of the dataflow has changed.
876 : :
877 : : AGE specify time when BB was visited last time.
878 : : AGE of 0 means we are visiting for first time and need to
879 : : compute transfer function to initialize datastructures.
880 : : Otherwise we re-do transfer function only if something change
881 : : while computing confluence functions.
882 : : We need to compute confluence only of basic block that are younger
883 : : then last visit of the BB.
884 : :
885 : : Return true if BB info has changed. This is always the case
886 : : in the first visit. */
887 : :
888 : : static bool
889 : 398642557 : df_worklist_propagate_forward (struct dataflow *dataflow,
890 : : unsigned bb_index,
891 : : unsigned *bbindex_to_postorder,
892 : : bitmap worklist,
893 : : bitmap pending,
894 : : sbitmap considered,
895 : : vec<int> &last_change_age,
896 : : int age)
897 : : {
898 : 398642557 : edge e;
899 : 398642557 : edge_iterator ei;
900 : 398642557 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
901 : 398642557 : bool changed = !age;
902 : :
903 : : /* Calculate <conf_op> of incoming edges. */
904 : 398642557 : if (EDGE_COUNT (bb->preds) > 0)
905 : 950999334 : FOR_EACH_EDGE (e, ei, bb->preds)
906 : : {
907 : 1141505346 : if (bbindex_to_postorder[e->src->index] < last_change_age.length ()
908 : 565156111 : && age <= last_change_age[bbindex_to_postorder[e->src->index]]
909 : 1111641271 : && bitmap_bit_p (considered, e->src->index))
910 : 540888598 : changed |= dataflow->problem->con_fun_n (e);
911 : : }
912 : 18395896 : else if (dataflow->problem->con_fun_0)
913 : 1391642 : dataflow->problem->con_fun_0 (bb);
914 : :
915 : 398642557 : if (changed
916 : 398642557 : && dataflow->problem->trans_fun (bb_index))
917 : : {
918 : : /* The out set of this block has changed.
919 : : Propagate to the outgoing blocks. */
920 : 834330598 : FOR_EACH_EDGE (e, ei, bb->succs)
921 : : {
922 : 490300389 : unsigned ob_index = e->dest->index;
923 : :
924 : 490300389 : if (bitmap_bit_p (considered, ob_index))
925 : : {
926 : 482810299 : if (bbindex_to_postorder[bb_index]
927 : 482810299 : < bbindex_to_postorder[ob_index])
928 : 458641767 : bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
929 : : else
930 : 24168532 : bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
931 : : }
932 : : }
933 : : return true;
934 : : }
935 : : return false;
936 : : }
937 : :
938 : :
939 : : /* Helper function for df_worklist_dataflow.
940 : : Propagate the dataflow backward. */
941 : :
942 : : static bool
943 : 425591010 : df_worklist_propagate_backward (struct dataflow *dataflow,
944 : : unsigned bb_index,
945 : : unsigned *bbindex_to_postorder,
946 : : bitmap worklist,
947 : : bitmap pending,
948 : : sbitmap considered,
949 : : vec<int> &last_change_age,
950 : : int age)
951 : : {
952 : 425591010 : edge e;
953 : 425591010 : edge_iterator ei;
954 : 425591010 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
955 : 425591010 : bool changed = !age;
956 : :
957 : : /* Calculate <conf_op> of incoming edges. */
958 : 425591010 : if (EDGE_COUNT (bb->succs) > 0)
959 : 1011780017 : FOR_EACH_EDGE (e, ei, bb->succs)
960 : : {
961 : 1234506890 : if (bbindex_to_postorder[e->dest->index] < last_change_age.length ()
962 : 612963067 : && age <= last_change_age[bbindex_to_postorder[e->dest->index]]
963 : 1202430087 : && bitmap_bit_p (considered, e->dest->index))
964 : 583177836 : changed |= dataflow->problem->con_fun_n (e);
965 : : }
966 : 31064438 : else if (dataflow->problem->con_fun_0)
967 : 27827764 : dataflow->problem->con_fun_0 (bb);
968 : :
969 : 425591010 : if (changed
970 : 425591010 : && dataflow->problem->trans_fun (bb_index))
971 : : {
972 : : /* The out set of this block has changed.
973 : : Propagate to the outgoing blocks. */
974 : 659506176 : FOR_EACH_EDGE (e, ei, bb->preds)
975 : : {
976 : 383564535 : unsigned ob_index = e->src->index;
977 : :
978 : 383564535 : if (bitmap_bit_p (considered, ob_index))
979 : : {
980 : 381736519 : if (bbindex_to_postorder[bb_index]
981 : 381736519 : < bbindex_to_postorder[ob_index])
982 : 360755258 : bitmap_set_bit (worklist, bbindex_to_postorder[ob_index]);
983 : : else
984 : 20981261 : bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
985 : : }
986 : : }
987 : : return true;
988 : : }
989 : : return false;
990 : : }
991 : :
992 : : /* Main dataflow solver loop.
993 : :
994 : : DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
995 : : need to visit.
996 : : BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
997 : : BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
998 : : PENDING will be freed.
999 : :
1000 : : The worklists are bitmaps indexed by postorder positions.
1001 : :
1002 : : The function implements standard algorithm for dataflow solving with two
1003 : : worklists (we are processing WORKLIST and storing new BBs to visit in
1004 : : PENDING).
1005 : :
1006 : : As an optimization we maintain ages when BB was changed (stored in
1007 : : last_change_age) and when it was last visited (stored in last_visit_age).
1008 : : This avoids need to re-do confluence function for edges to basic blocks
1009 : : whose source did not change since destination was visited last time. */
1010 : :
1011 : : static void
1012 : 39181412 : df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
1013 : : bitmap pending,
1014 : : sbitmap considered,
1015 : : int *blocks_in_postorder,
1016 : : unsigned *bbindex_to_postorder,
1017 : : int n_blocks)
1018 : : {
1019 : 39181412 : enum df_flow_dir dir = dataflow->problem->dir;
1020 : 39181412 : int dcount = 0;
1021 : 39181412 : bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
1022 : 39181412 : int age = 0;
1023 : 39181412 : bool changed;
1024 : 39181412 : vec<int> last_visit_age = vNULL;
1025 : 39181412 : vec<int> last_change_age = vNULL;
1026 : 39181412 : int prev_age;
1027 : :
1028 : 39181412 : last_visit_age.safe_grow_cleared (n_blocks, true);
1029 : 39181412 : last_change_age.safe_grow_cleared (n_blocks, true);
1030 : :
1031 : : /* Double-queueing. Worklist is for the current iteration,
1032 : : and pending is for the next. */
1033 : 132800086 : while (!bitmap_empty_p (pending))
1034 : : {
1035 : : std::swap (pending, worklist);
1036 : :
1037 : 824233567 : do
1038 : : {
1039 : 824233567 : unsigned index = bitmap_clear_first_set_bit (worklist);
1040 : :
1041 : 824233567 : unsigned bb_index;
1042 : 824233567 : dcount++;
1043 : :
1044 : 824233567 : bb_index = blocks_in_postorder[index];
1045 : 824233567 : prev_age = last_visit_age[index];
1046 : 824233567 : if (dir == DF_FORWARD)
1047 : 398642557 : changed = df_worklist_propagate_forward (dataflow, bb_index,
1048 : : bbindex_to_postorder,
1049 : : worklist, pending,
1050 : : considered,
1051 : : last_change_age,
1052 : : prev_age);
1053 : : else
1054 : 425591010 : changed = df_worklist_propagate_backward (dataflow, bb_index,
1055 : : bbindex_to_postorder,
1056 : : worklist, pending,
1057 : : considered,
1058 : : last_change_age,
1059 : : prev_age);
1060 : 824233567 : last_visit_age[index] = ++age;
1061 : 824233567 : if (changed)
1062 : 619971850 : last_change_age[index] = age;
1063 : : }
1064 : 824233567 : while (!bitmap_empty_p (worklist));
1065 : : }
1066 : :
1067 : 39181412 : BITMAP_FREE (worklist);
1068 : 39181412 : BITMAP_FREE (pending);
1069 : 39181412 : last_visit_age.release ();
1070 : 39181412 : last_change_age.release ();
1071 : :
1072 : : /* Dump statistics. */
1073 : 39181412 : if (dump_file)
1074 : 1651 : fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1075 : : " n_basic_blocks %d n_edges %d"
1076 : : " count %d (%5.2g)\n",
1077 : : n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
1078 : 1651 : dcount, dcount / (double)n_basic_blocks_for_fn (cfun));
1079 : 39181412 : }
1080 : :
1081 : : /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1082 : : with "n"-th bit representing the n-th block in the reverse-postorder order.
1083 : : The solver is a double-queue algorithm similar to the "double stack" solver
1084 : : from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1085 : : The only significant difference is that the worklist in this implementation
1086 : : is always sorted in RPO of the CFG visiting direction. */
1087 : :
1088 : : void
1089 : 39181412 : df_worklist_dataflow (struct dataflow *dataflow,
1090 : : bitmap blocks_to_consider,
1091 : : int *blocks_in_postorder,
1092 : : int n_blocks)
1093 : : {
1094 : 39181412 : bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1095 : 39181412 : bitmap_iterator bi;
1096 : 39181412 : unsigned int *bbindex_to_postorder;
1097 : 39181412 : int i;
1098 : 39181412 : unsigned int index;
1099 : 39181412 : enum df_flow_dir dir = dataflow->problem->dir;
1100 : :
1101 : 39181412 : gcc_assert (dir != DF_NONE);
1102 : :
1103 : : /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1104 : 39181412 : bbindex_to_postorder = XNEWVEC (unsigned int,
1105 : : last_basic_block_for_fn (cfun));
1106 : :
1107 : : /* Initialize the array to an out-of-bound value. */
1108 : 1442625854 : for (i = 0; i < last_basic_block_for_fn (cfun); i++)
1109 : 1364263030 : bbindex_to_postorder[i] = last_basic_block_for_fn (cfun);
1110 : :
1111 : : /* Initialize the considered map. */
1112 : 39181412 : auto_sbitmap considered (last_basic_block_for_fn (cfun));
1113 : 39181412 : bitmap_clear (considered);
1114 : 754658037 : EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1115 : : {
1116 : 715476625 : bitmap_set_bit (considered, index);
1117 : : }
1118 : :
1119 : : /* Initialize the mapping of block index to postorder. */
1120 : 758510193 : for (i = 0; i < n_blocks; i++)
1121 : : {
1122 : 719328781 : bbindex_to_postorder[blocks_in_postorder[i]] = i;
1123 : : /* Add all blocks to the worklist. */
1124 : 719328781 : bitmap_set_bit (pending, i);
1125 : : }
1126 : :
1127 : : /* Initialize the problem. */
1128 : 39181412 : if (dataflow->problem->init_fun)
1129 : 36435123 : dataflow->problem->init_fun (blocks_to_consider);
1130 : :
1131 : : /* Solve it. */
1132 : 39181412 : df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1133 : : blocks_in_postorder,
1134 : : bbindex_to_postorder,
1135 : : n_blocks);
1136 : 39181412 : free (bbindex_to_postorder);
1137 : 39181412 : }
1138 : :
1139 : :
1140 : : /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1141 : : the order of the remaining entries. Returns the length of the resulting
1142 : : list. */
1143 : :
1144 : : static unsigned
1145 : 0 : df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1146 : : {
1147 : 0 : unsigned act, last;
1148 : :
1149 : 0 : for (act = 0, last = 0; act < len; act++)
1150 : 0 : if (bitmap_bit_p (blocks, list[act]))
1151 : 0 : list[last++] = list[act];
1152 : :
1153 : 0 : return last;
1154 : : }
1155 : :
1156 : :
1157 : : /* Execute dataflow analysis on a single dataflow problem.
1158 : :
1159 : : BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1160 : : examined or will be computed. For calls from DF_ANALYZE, this is
1161 : : the set of blocks that has been passed to DF_SET_BLOCKS.
1162 : : */
1163 : :
1164 : : void
1165 : 80701737 : df_analyze_problem (struct dataflow *dflow,
1166 : : bitmap blocks_to_consider,
1167 : : int *postorder, int n_blocks)
1168 : : {
1169 : 80701737 : timevar_push (dflow->problem->tv_id);
1170 : :
1171 : : /* (Re)Allocate the datastructures necessary to solve the problem. */
1172 : 80701737 : if (dflow->problem->alloc_fun)
1173 : 57864985 : dflow->problem->alloc_fun (blocks_to_consider);
1174 : :
1175 : : #ifdef ENABLE_DF_CHECKING
1176 : : if (dflow->problem->verify_start_fun)
1177 : : dflow->problem->verify_start_fun ();
1178 : : #endif
1179 : :
1180 : : /* Set up the problem and compute the local information. */
1181 : 80701737 : if (dflow->problem->local_compute_fun)
1182 : 51690675 : dflow->problem->local_compute_fun (blocks_to_consider);
1183 : :
1184 : : /* Solve the equations. */
1185 : 80701737 : if (dflow->problem->dataflow_fun)
1186 : 35724387 : dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1187 : : postorder, n_blocks);
1188 : :
1189 : : /* Massage the solution. */
1190 : 80701737 : if (dflow->problem->finalize_fun)
1191 : 57442675 : dflow->problem->finalize_fun (blocks_to_consider);
1192 : :
1193 : : #ifdef ENABLE_DF_CHECKING
1194 : : if (dflow->problem->verify_end_fun)
1195 : : dflow->problem->verify_end_fun ();
1196 : : #endif
1197 : :
1198 : 80701737 : timevar_pop (dflow->problem->tv_id);
1199 : :
1200 : 80701737 : dflow->computed = true;
1201 : 80701737 : }
1202 : :
1203 : :
1204 : : /* Analyze dataflow info. */
1205 : :
1206 : : static void
1207 : 40840758 : df_analyze_1 (void)
1208 : : {
1209 : 40840758 : int i;
1210 : :
1211 : : /* We need to do this before the df_verify_all because this is
1212 : : not kept incrementally up to date. */
1213 : 40840758 : df_compute_regs_ever_live (false);
1214 : 40840758 : df_process_deferred_rescans ();
1215 : :
1216 : 40840758 : if (dump_file)
1217 : 1523 : fprintf (dump_file, "df_analyze called\n");
1218 : :
1219 : : #ifndef ENABLE_DF_CHECKING
1220 : 40840758 : if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1221 : : #endif
1222 : 6496418 : df_verify ();
1223 : :
1224 : : /* Skip over the DF_SCAN problem. */
1225 : 187129951 : for (i = 1; i < df->num_problems_defined; i++)
1226 : : {
1227 : 146289193 : struct dataflow *dflow = df->problems_in_order[i];
1228 : 146289193 : if (dflow->solutions_dirty)
1229 : : {
1230 : 80701470 : if (dflow->problem->dir == DF_FORWARD)
1231 : 20557131 : df_analyze_problem (dflow,
1232 : : df->blocks_to_analyze,
1233 : : df->postorder_inverted,
1234 : : df->n_blocks);
1235 : : else
1236 : 60144339 : df_analyze_problem (dflow,
1237 : : df->blocks_to_analyze,
1238 : : df->postorder,
1239 : : df->n_blocks);
1240 : : }
1241 : : }
1242 : :
1243 : 40840758 : if (!df->analyze_subset)
1244 : : {
1245 : 39396082 : BITMAP_FREE (df->blocks_to_analyze);
1246 : 39396082 : df->blocks_to_analyze = NULL;
1247 : : }
1248 : :
1249 : : #ifdef DF_DEBUG_CFG
1250 : : df_set_clean_cfg ();
1251 : : #endif
1252 : 40840758 : }
1253 : :
1254 : : /* Analyze dataflow info. */
1255 : :
1256 : : void
1257 : 39396082 : df_analyze (void)
1258 : : {
1259 : 39396082 : bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1260 : :
1261 : 39396082 : free (df->postorder);
1262 : 39396082 : free (df->postorder_inverted);
1263 : : /* For DF_FORWARD use a RPO on the forward graph. Since we want to
1264 : : have unreachable blocks deleted use post_order_compute and reverse
1265 : : the order. */
1266 : 39396082 : df->postorder_inverted = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1267 : 39396082 : df->n_blocks = post_order_compute (df->postorder_inverted, true, true);
1268 : 292585294 : for (int i = 0; i < df->n_blocks / 2; ++i)
1269 : 253189212 : std::swap (df->postorder_inverted[i],
1270 : 253189212 : df->postorder_inverted[df->n_blocks - 1 - i]);
1271 : : /* For DF_BACKWARD use a RPO on the reverse graph. */
1272 : 39396082 : df->postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1273 : 39396082 : int n = inverted_rev_post_order_compute (cfun, df->postorder);
1274 : 39396082 : gcc_assert (n == df->n_blocks);
1275 : :
1276 : 576067323 : for (int i = 0; i < df->n_blocks; i++)
1277 : 536671241 : bitmap_set_bit (current_all_blocks, df->postorder[i]);
1278 : :
1279 : 39396082 : if (flag_checking)
1280 : : {
1281 : : /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1282 : : the ENTRY block. */
1283 : 576063157 : for (int i = 0; i < df->n_blocks; i++)
1284 : 536667680 : gcc_assert (bitmap_bit_p (current_all_blocks,
1285 : : df->postorder_inverted[i]));
1286 : : }
1287 : :
1288 : : /* Make sure that we have pruned any unreachable blocks from these
1289 : : sets. */
1290 : 39396082 : if (df->analyze_subset)
1291 : : {
1292 : 0 : bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1293 : 0 : unsigned int newlen = df_prune_to_subcfg (df->postorder, df->n_blocks,
1294 : : df->blocks_to_analyze);
1295 : 0 : df_prune_to_subcfg (df->postorder_inverted, df->n_blocks,
1296 : : df->blocks_to_analyze);
1297 : 0 : df->n_blocks = newlen;
1298 : 0 : BITMAP_FREE (current_all_blocks);
1299 : : }
1300 : : else
1301 : : {
1302 : 39396082 : df->blocks_to_analyze = current_all_blocks;
1303 : 39396082 : current_all_blocks = NULL;
1304 : : }
1305 : :
1306 : 39396082 : df_analyze_1 ();
1307 : 39396082 : }
1308 : :
1309 : : /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1310 : : Returns the number of blocks which is always loop->num_nodes. */
1311 : :
1312 : : static int
1313 : 1444676 : loop_rev_post_order_compute (int *post_order, class loop *loop)
1314 : : {
1315 : 1444676 : edge_iterator *stack;
1316 : 1444676 : int sp;
1317 : 1444676 : int post_order_num = loop->num_nodes - 1;
1318 : :
1319 : : /* Allocate stack for back-tracking up CFG. */
1320 : 1444676 : stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1321 : 1444676 : sp = 0;
1322 : :
1323 : : /* Allocate bitmap to track nodes that have been visited. */
1324 : 1444676 : auto_bitmap visited;
1325 : :
1326 : : /* Push the first edge on to the stack. */
1327 : 1444676 : stack[sp++] = ei_start (loop_preheader_edge (loop)->src->succs);
1328 : :
1329 : 23466308 : while (sp)
1330 : : {
1331 : 22021632 : edge_iterator ei;
1332 : 22021632 : basic_block src;
1333 : 22021632 : basic_block dest;
1334 : :
1335 : : /* Look at the edge on the top of the stack. */
1336 : 22021632 : ei = stack[sp - 1];
1337 : 22021632 : src = ei_edge (ei)->src;
1338 : 22021632 : dest = ei_edge (ei)->dest;
1339 : :
1340 : : /* Check if the edge destination has been visited yet and mark it
1341 : : if not so. */
1342 : 22021632 : if (flow_bb_inside_loop_p (loop, dest)
1343 : 22021632 : && bitmap_set_bit (visited, dest->index))
1344 : : {
1345 : 7993512 : if (EDGE_COUNT (dest->succs) > 0)
1346 : : /* Since the DEST node has been visited for the first
1347 : : time, check its successors. */
1348 : 7993512 : stack[sp++] = ei_start (dest->succs);
1349 : : else
1350 : 0 : post_order[post_order_num--] = dest->index;
1351 : : }
1352 : : else
1353 : : {
1354 : 14028120 : if (ei_one_before_end_p (ei)
1355 : 14028120 : && src != loop_preheader_edge (loop)->src)
1356 : 7993512 : post_order[post_order_num--] = src->index;
1357 : :
1358 : 14028120 : if (!ei_one_before_end_p (ei))
1359 : 4589932 : ei_next (&stack[sp - 1]);
1360 : : else
1361 : 9438188 : sp--;
1362 : : }
1363 : : }
1364 : :
1365 : 1444676 : free (stack);
1366 : :
1367 : 1444676 : return loop->num_nodes;
1368 : 1444676 : }
1369 : :
1370 : : /* Compute the reverse top sort order of the inverted sub-CFG specified
1371 : : by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1372 : :
1373 : : static int
1374 : 1444676 : loop_inverted_rev_post_order_compute (int *post_order, class loop *loop)
1375 : : {
1376 : 1444676 : basic_block bb;
1377 : 1444676 : edge_iterator *stack;
1378 : 1444676 : int sp;
1379 : 1444676 : int post_order_num = loop->num_nodes - 1;
1380 : :
1381 : : /* Allocate stack for back-tracking up CFG. */
1382 : 1444676 : stack = XNEWVEC (edge_iterator, loop->num_nodes + 1);
1383 : 1444676 : sp = 0;
1384 : :
1385 : : /* Allocate bitmap to track nodes that have been visited. */
1386 : 1444676 : auto_bitmap visited;
1387 : :
1388 : : /* Put all latches into the initial work list. In theory we'd want
1389 : : to start from loop exits but then we'd have the special case of
1390 : : endless loops. It doesn't really matter for DF iteration order and
1391 : : handling latches last is probably even better. */
1392 : 1444676 : stack[sp++] = ei_start (loop->header->preds);
1393 : 1444676 : bitmap_set_bit (visited, loop->header->index);
1394 : :
1395 : : /* The inverted traversal loop. */
1396 : 20694532 : while (sp)
1397 : : {
1398 : 17805180 : edge_iterator ei;
1399 : 17805180 : basic_block pred;
1400 : :
1401 : : /* Look at the edge on the top of the stack. */
1402 : 17805180 : ei = stack[sp - 1];
1403 : 17805180 : bb = ei_edge (ei)->dest;
1404 : 17805180 : pred = ei_edge (ei)->src;
1405 : :
1406 : : /* Check if the predecessor has been visited yet and mark it
1407 : : if not so. */
1408 : 17805180 : if (flow_bb_inside_loop_p (loop, pred)
1409 : 17805180 : && bitmap_set_bit (visited, pred->index))
1410 : : {
1411 : 6548836 : if (EDGE_COUNT (pred->preds) > 0)
1412 : : /* Since the predecessor node has been visited for the first
1413 : : time, check its predecessors. */
1414 : 6548836 : stack[sp++] = ei_start (pred->preds);
1415 : : else
1416 : 0 : post_order[post_order_num--] = pred->index;
1417 : : }
1418 : : else
1419 : : {
1420 : 11256344 : if (flow_bb_inside_loop_p (loop, bb)
1421 : 11256344 : && ei_one_before_end_p (ei))
1422 : 7993512 : post_order[post_order_num--] = bb->index;
1423 : :
1424 : 11256344 : if (!ei_one_before_end_p (ei))
1425 : 3262832 : ei_next (&stack[sp - 1]);
1426 : : else
1427 : 7993512 : sp--;
1428 : : }
1429 : : }
1430 : :
1431 : 1444676 : free (stack);
1432 : 1444676 : return loop->num_nodes;
1433 : 1444676 : }
1434 : :
1435 : :
1436 : : /* Analyze dataflow info for the basic blocks contained in LOOP. */
1437 : :
1438 : : void
1439 : 1444676 : df_analyze_loop (class loop *loop)
1440 : : {
1441 : 1444676 : free (df->postorder);
1442 : 1444676 : free (df->postorder_inverted);
1443 : :
1444 : 1444676 : df->postorder = XNEWVEC (int, loop->num_nodes);
1445 : 1444676 : df->postorder_inverted = XNEWVEC (int, loop->num_nodes);
1446 : 1444676 : df->n_blocks = loop_rev_post_order_compute (df->postorder_inverted, loop);
1447 : 1444676 : int n = loop_inverted_rev_post_order_compute (df->postorder, loop);
1448 : 1444676 : gcc_assert ((unsigned) df->n_blocks == loop->num_nodes);
1449 : 1444676 : gcc_assert ((unsigned) n == loop->num_nodes);
1450 : :
1451 : 1444676 : bitmap blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1452 : 9438188 : for (int i = 0; i < df->n_blocks; ++i)
1453 : 7993512 : bitmap_set_bit (blocks, df->postorder[i]);
1454 : 1444676 : df_set_blocks (blocks);
1455 : 1444676 : BITMAP_FREE (blocks);
1456 : :
1457 : 1444676 : df_analyze_1 ();
1458 : 1444676 : }
1459 : :
1460 : :
1461 : : /* Return the number of basic blocks from the last call to df_analyze. */
1462 : :
1463 : : int
1464 : 12963713 : df_get_n_blocks (enum df_flow_dir dir)
1465 : : {
1466 : 12963713 : gcc_assert (dir != DF_NONE);
1467 : :
1468 : 12963713 : if (dir == DF_FORWARD)
1469 : : {
1470 : 397546 : gcc_assert (df->postorder_inverted);
1471 : 397546 : return df->n_blocks;
1472 : : }
1473 : :
1474 : 12566167 : gcc_assert (df->postorder);
1475 : 12566167 : return df->n_blocks;
1476 : : }
1477 : :
1478 : :
1479 : : /* Return a pointer to the array of basic blocks in the reverse postorder.
1480 : : Depending on the direction of the dataflow problem,
1481 : : it returns either the usual reverse postorder array
1482 : : or the reverse postorder of inverted traversal. */
1483 : : int *
1484 : 12963713 : df_get_postorder (enum df_flow_dir dir)
1485 : : {
1486 : 12963713 : gcc_assert (dir != DF_NONE);
1487 : :
1488 : 12963713 : if (dir == DF_FORWARD)
1489 : : {
1490 : 397546 : gcc_assert (df->postorder_inverted);
1491 : : return df->postorder_inverted;
1492 : : }
1493 : 12566167 : gcc_assert (df->postorder);
1494 : : return df->postorder;
1495 : : }
1496 : :
1497 : : static struct df_problem user_problem;
1498 : : static struct dataflow user_dflow;
1499 : :
1500 : : /* Interface for calling iterative dataflow with user defined
1501 : : confluence and transfer functions. All that is necessary is to
1502 : : supply DIR, a direction, CONF_FUN_0, a confluence function for
1503 : : blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1504 : : confluence function, TRANS_FUN, the basic block transfer function,
1505 : : and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1506 : : postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1507 : :
1508 : : void
1509 : 2746289 : df_simple_dataflow (enum df_flow_dir dir,
1510 : : df_init_function init_fun,
1511 : : df_confluence_function_0 con_fun_0,
1512 : : df_confluence_function_n con_fun_n,
1513 : : df_transfer_function trans_fun,
1514 : : bitmap blocks, int * postorder, int n_blocks)
1515 : : {
1516 : 2746289 : memset (&user_problem, 0, sizeof (struct df_problem));
1517 : 2746289 : user_problem.dir = dir;
1518 : 2746289 : user_problem.init_fun = init_fun;
1519 : 2746289 : user_problem.con_fun_0 = con_fun_0;
1520 : 2746289 : user_problem.con_fun_n = con_fun_n;
1521 : 2746289 : user_problem.trans_fun = trans_fun;
1522 : 2746289 : user_dflow.problem = &user_problem;
1523 : 2746289 : df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1524 : 2746289 : }
1525 : :
1526 : :
1527 : :
1528 : : /*----------------------------------------------------------------------------
1529 : : Functions to support limited incremental change.
1530 : : ----------------------------------------------------------------------------*/
1531 : :
1532 : :
1533 : : /* Get basic block info. */
1534 : :
1535 : : static void *
1536 : 23052681 : df_get_bb_info (struct dataflow *dflow, unsigned int index)
1537 : : {
1538 : 3587709 : if (dflow->block_info == NULL)
1539 : : return NULL;
1540 : 23052681 : if (index >= dflow->block_info_size)
1541 : : return NULL;
1542 : 22811417 : return (void *)((char *)dflow->block_info
1543 : 3619263 : + index * dflow->problem->block_info_elt_size);
1544 : : }
1545 : :
1546 : :
1547 : : /* Set basic block info. */
1548 : :
1549 : : static void
1550 : 602960179 : df_set_bb_info (struct dataflow *dflow, unsigned int index,
1551 : : void *bb_info)
1552 : : {
1553 : 602960179 : gcc_assert (dflow->block_info);
1554 : 602960179 : memcpy ((char *)dflow->block_info
1555 : 602960179 : + index * dflow->problem->block_info_elt_size,
1556 : 602960179 : bb_info, dflow->problem->block_info_elt_size);
1557 : 602960179 : }
1558 : :
1559 : :
1560 : : /* Clear basic block info. */
1561 : :
1562 : : static void
1563 : 22779863 : df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1564 : : {
1565 : 22779863 : gcc_assert (dflow->block_info);
1566 : 22779863 : gcc_assert (dflow->block_info_size > index);
1567 : 22779863 : memset ((char *)dflow->block_info
1568 : 22779863 : + index * dflow->problem->block_info_elt_size,
1569 : 22779863 : 0, dflow->problem->block_info_elt_size);
1570 : 22779863 : }
1571 : :
1572 : :
1573 : : /* Mark the solutions as being out of date. */
1574 : :
1575 : : void
1576 : 896329320 : df_mark_solutions_dirty (void)
1577 : : {
1578 : 896329320 : if (df)
1579 : : {
1580 : : int p;
1581 : 1607691593 : for (p = 1; p < df->num_problems_defined; p++)
1582 : 1206001491 : df->problems_in_order[p]->solutions_dirty = true;
1583 : : }
1584 : 896329320 : }
1585 : :
1586 : :
1587 : : /* Return true if BB needs it's transfer functions recomputed. */
1588 : :
1589 : : bool
1590 : 100713319 : df_get_bb_dirty (basic_block bb)
1591 : : {
1592 : 201426638 : return bitmap_bit_p ((df_live
1593 : 100713319 : ? df_live : df_lr)->out_of_date_transfer_functions,
1594 : 100713319 : bb->index);
1595 : : }
1596 : :
1597 : :
1598 : : /* Mark BB as needing it's transfer functions as being out of
1599 : : date. */
1600 : :
1601 : : void
1602 : 331155203 : df_set_bb_dirty (basic_block bb)
1603 : : {
1604 : 331155203 : bb->flags |= BB_MODIFIED;
1605 : 331155203 : if (df)
1606 : : {
1607 : : int p;
1608 : 1280589108 : for (p = 1; p < df->num_problems_defined; p++)
1609 : : {
1610 : 956509487 : struct dataflow *dflow = df->problems_in_order[p];
1611 : 956509487 : if (dflow->out_of_date_transfer_functions)
1612 : 501211614 : bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1613 : : }
1614 : 324079621 : df_mark_solutions_dirty ();
1615 : : }
1616 : 331155203 : }
1617 : :
1618 : :
1619 : : /* Grow the bb_info array. */
1620 : :
1621 : : void
1622 : 1167087677 : df_grow_bb_info (struct dataflow *dflow)
1623 : : {
1624 : 1167087677 : unsigned int new_size = last_basic_block_for_fn (cfun) + 1;
1625 : 1167087677 : if (dflow->block_info_size < new_size)
1626 : : {
1627 : 14329179 : new_size += new_size / 4;
1628 : 14329179 : dflow->block_info
1629 : 14329179 : = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1630 : : new_size
1631 : : * dflow->problem->block_info_elt_size);
1632 : 14329179 : memset ((char *)dflow->block_info
1633 : : + dflow->block_info_size
1634 : 14329179 : * dflow->problem->block_info_elt_size,
1635 : : 0,
1636 : 14329179 : (new_size - dflow->block_info_size)
1637 : 14329179 : * dflow->problem->block_info_elt_size);
1638 : 14329179 : dflow->block_info_size = new_size;
1639 : : }
1640 : 1167087677 : }
1641 : :
1642 : :
1643 : : /* Clear the dirty bits. This is called from places that delete
1644 : : blocks. */
1645 : : static void
1646 : 6609571 : df_clear_bb_dirty (basic_block bb)
1647 : : {
1648 : 6609571 : int p;
1649 : 26788251 : for (p = 1; p < df->num_problems_defined; p++)
1650 : : {
1651 : 20178680 : struct dataflow *dflow = df->problems_in_order[p];
1652 : 20178680 : if (dflow->out_of_date_transfer_functions)
1653 : 12855393 : bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1654 : : }
1655 : 6609571 : }
1656 : :
1657 : : /* Called from the rtl_compact_blocks to reorganize the problems basic
1658 : : block info. */
1659 : :
1660 : : void
1661 : 18079949 : df_compact_blocks (void)
1662 : : {
1663 : 18079949 : int i, p;
1664 : 18079949 : basic_block bb;
1665 : 18079949 : void *problem_temps;
1666 : :
1667 : 18079949 : auto_bitmap tmp (&df_bitmap_obstack);
1668 : 89559538 : for (p = 0; p < df->num_problems_defined; p++)
1669 : : {
1670 : 71479589 : struct dataflow *dflow = df->problems_in_order[p];
1671 : :
1672 : : /* Need to reorganize the out_of_date_transfer_functions for the
1673 : : dflow problem. */
1674 : 71479589 : if (dflow->out_of_date_transfer_functions)
1675 : : {
1676 : 33213160 : bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1677 : 33213160 : bitmap_clear (dflow->out_of_date_transfer_functions);
1678 : 33213160 : if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1679 : 839275 : bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1680 : 33213160 : if (bitmap_bit_p (tmp, EXIT_BLOCK))
1681 : 839476 : bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1682 : :
1683 : 33213160 : i = NUM_FIXED_BLOCKS;
1684 : 426474777 : FOR_EACH_BB_FN (bb, cfun)
1685 : : {
1686 : 393261617 : if (bitmap_bit_p (tmp, bb->index))
1687 : 70341667 : bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1688 : 393261617 : i++;
1689 : : }
1690 : : }
1691 : :
1692 : : /* Now shuffle the block info for the problem. */
1693 : 71479589 : if (dflow->problem->free_bb_fun)
1694 : : {
1695 : 51293109 : int size = (last_basic_block_for_fn (cfun)
1696 : 51293109 : * dflow->problem->block_info_elt_size);
1697 : 51293109 : problem_temps = XNEWVAR (char, size);
1698 : 51293109 : df_grow_bb_info (dflow);
1699 : 51293109 : memcpy (problem_temps, dflow->block_info, size);
1700 : :
1701 : : /* Copy the bb info from the problem tmps to the proper
1702 : : place in the block_info vector. Null out the copied
1703 : : item. The entry and exit blocks never move. */
1704 : 51293109 : i = NUM_FIXED_BLOCKS;
1705 : 654221734 : FOR_EACH_BB_FN (bb, cfun)
1706 : : {
1707 : 602928625 : df_set_bb_info (dflow, i,
1708 : : (char *)problem_temps
1709 : 602928625 : + bb->index * dflow->problem->block_info_elt_size);
1710 : 602928625 : i++;
1711 : : }
1712 : 51293109 : memset ((char *)dflow->block_info
1713 : 51293109 : + i * dflow->problem->block_info_elt_size, 0,
1714 : 51293109 : (last_basic_block_for_fn (cfun) - i)
1715 : 51293109 : * dflow->problem->block_info_elt_size);
1716 : 51293109 : free (problem_temps);
1717 : : }
1718 : : }
1719 : :
1720 : : /* Shuffle the bits in the basic_block indexed arrays. */
1721 : :
1722 : 18079949 : if (df->blocks_to_analyze)
1723 : : {
1724 : 0 : if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1725 : 0 : bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1726 : 0 : if (bitmap_bit_p (tmp, EXIT_BLOCK))
1727 : 0 : bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1728 : 0 : bitmap_copy (tmp, df->blocks_to_analyze);
1729 : 0 : bitmap_clear (df->blocks_to_analyze);
1730 : 0 : i = NUM_FIXED_BLOCKS;
1731 : 0 : FOR_EACH_BB_FN (bb, cfun)
1732 : : {
1733 : 0 : if (bitmap_bit_p (tmp, bb->index))
1734 : 0 : bitmap_set_bit (df->blocks_to_analyze, i);
1735 : 0 : i++;
1736 : : }
1737 : : }
1738 : :
1739 : 18079949 : i = NUM_FIXED_BLOCKS;
1740 : 227746957 : FOR_EACH_BB_FN (bb, cfun)
1741 : : {
1742 : 209667008 : SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
1743 : 209667008 : bb->index = i;
1744 : 209667008 : i++;
1745 : : }
1746 : :
1747 : 18079949 : gcc_assert (i == n_basic_blocks_for_fn (cfun));
1748 : :
1749 : 24685179 : for (; i < last_basic_block_for_fn (cfun); i++)
1750 : 6605230 : SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
1751 : :
1752 : : #ifdef DF_DEBUG_CFG
1753 : : if (!df_lr->solutions_dirty)
1754 : : df_set_clean_cfg ();
1755 : : #endif
1756 : 18079949 : }
1757 : :
1758 : :
1759 : : /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1760 : : block. There is no excuse for people to do this kind of thing. */
1761 : :
1762 : : void
1763 : 10518 : df_bb_replace (int old_index, basic_block new_block)
1764 : : {
1765 : 10518 : int new_block_index = new_block->index;
1766 : 10518 : int p;
1767 : :
1768 : 10518 : if (dump_file)
1769 : 0 : fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1770 : :
1771 : 10518 : gcc_assert (df);
1772 : 10518 : gcc_assert (BASIC_BLOCK_FOR_FN (cfun, old_index) == NULL);
1773 : :
1774 : 52590 : for (p = 0; p < df->num_problems_defined; p++)
1775 : : {
1776 : 42072 : struct dataflow *dflow = df->problems_in_order[p];
1777 : 42072 : if (dflow->block_info)
1778 : : {
1779 : 31554 : df_grow_bb_info (dflow);
1780 : 63108 : df_set_bb_info (dflow, old_index,
1781 : : df_get_bb_info (dflow, new_block_index));
1782 : : }
1783 : : }
1784 : :
1785 : 10518 : df_clear_bb_dirty (new_block);
1786 : 10518 : SET_BASIC_BLOCK_FOR_FN (cfun, old_index, new_block);
1787 : 10518 : new_block->index = old_index;
1788 : 10518 : df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun, old_index));
1789 : 10518 : SET_BASIC_BLOCK_FOR_FN (cfun, new_block_index, NULL);
1790 : 10518 : }
1791 : :
1792 : :
1793 : : /* Free all of the per basic block dataflow from all of the problems.
1794 : : This is typically called before a basic block is deleted and the
1795 : : problem will be reanalyzed. */
1796 : :
1797 : : void
1798 : 11308761 : df_bb_delete (int bb_index)
1799 : : {
1800 : 11308761 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1801 : 11308761 : int i;
1802 : :
1803 : 11308761 : if (!df)
1804 : : return;
1805 : :
1806 : 33345232 : for (i = 0; i < df->num_problems_defined; i++)
1807 : : {
1808 : 26746179 : struct dataflow *dflow = df->problems_in_order[i];
1809 : 26746179 : if (dflow->problem->free_bb_fun)
1810 : : {
1811 : 46179597 : void *bb_info = df_get_bb_info (dflow, bb_index);
1812 : 19192154 : if (bb_info)
1813 : : {
1814 : 19192154 : dflow->problem->free_bb_fun (bb, bb_info);
1815 : 19192154 : df_clear_bb_info (dflow, bb_index);
1816 : : }
1817 : : }
1818 : : }
1819 : 6599053 : df_clear_bb_dirty (bb);
1820 : 6599053 : df_mark_solutions_dirty ();
1821 : : }
1822 : :
1823 : :
1824 : : /* Verify that there is a place for everything and everything is in
1825 : : its place. This is too expensive to run after every pass in the
1826 : : mainline. However this is an excellent debugging tool if the
1827 : : dataflow information is not being updated properly. You can just
1828 : : sprinkle calls in until you find the place that is changing an
1829 : : underlying structure without calling the proper updating
1830 : : routine. */
1831 : :
1832 : : void
1833 : 6496418 : df_verify (void)
1834 : : {
1835 : 6496418 : df_scan_verify ();
1836 : : #ifdef ENABLE_DF_CHECKING
1837 : : df_lr_verify_transfer_functions ();
1838 : : if (df_live)
1839 : : df_live_verify_transfer_functions ();
1840 : : #endif
1841 : 6496418 : df->changeable_flags &= ~DF_VERIFY_SCHEDULED;
1842 : 6496418 : }
1843 : :
1844 : : #ifdef DF_DEBUG_CFG
1845 : :
1846 : : /* Compute an array of ints that describes the cfg. This can be used
1847 : : to discover places where the cfg is modified by the appropriate
1848 : : calls have not been made to the keep df informed. The internals of
1849 : : this are unexciting, the key is that two instances of this can be
1850 : : compared to see if any changes have been made to the cfg. */
1851 : :
1852 : : static int *
1853 : : df_compute_cfg_image (void)
1854 : : {
1855 : : basic_block bb;
1856 : : int size = 2 + (2 * n_basic_blocks_for_fn (cfun));
1857 : : int i;
1858 : : int * map;
1859 : :
1860 : : FOR_ALL_BB_FN (bb, cfun)
1861 : : {
1862 : : size += EDGE_COUNT (bb->succs);
1863 : : }
1864 : :
1865 : : map = XNEWVEC (int, size);
1866 : : map[0] = size;
1867 : : i = 1;
1868 : : FOR_ALL_BB_FN (bb, cfun)
1869 : : {
1870 : : edge_iterator ei;
1871 : : edge e;
1872 : :
1873 : : map[i++] = bb->index;
1874 : : FOR_EACH_EDGE (e, ei, bb->succs)
1875 : : map[i++] = e->dest->index;
1876 : : map[i++] = -1;
1877 : : }
1878 : : map[i] = -1;
1879 : : return map;
1880 : : }
1881 : :
1882 : : static int *saved_cfg = NULL;
1883 : :
1884 : :
1885 : : /* This function compares the saved version of the cfg with the
1886 : : current cfg and aborts if the two are identical. The function
1887 : : silently returns if the cfg has been marked as dirty or the two are
1888 : : the same. */
1889 : :
1890 : : void
1891 : : df_check_cfg_clean (void)
1892 : : {
1893 : : int *new_map;
1894 : :
1895 : : if (!df)
1896 : : return;
1897 : :
1898 : : if (df_lr->solutions_dirty)
1899 : : return;
1900 : :
1901 : : if (saved_cfg == NULL)
1902 : : return;
1903 : :
1904 : : new_map = df_compute_cfg_image ();
1905 : : gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1906 : : free (new_map);
1907 : : }
1908 : :
1909 : :
1910 : : /* This function builds a cfg fingerprint and squirrels it away in
1911 : : saved_cfg. */
1912 : :
1913 : : static void
1914 : : df_set_clean_cfg (void)
1915 : : {
1916 : : free (saved_cfg);
1917 : : saved_cfg = df_compute_cfg_image ();
1918 : : }
1919 : :
1920 : : #endif /* DF_DEBUG_CFG */
1921 : : /*----------------------------------------------------------------------------
1922 : : PUBLIC INTERFACES TO QUERY INFORMATION.
1923 : : ----------------------------------------------------------------------------*/
1924 : :
1925 : :
1926 : : /* Return first def of REGNO within BB. */
1927 : :
1928 : : df_ref
1929 : 0 : df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1930 : : {
1931 : 0 : rtx_insn *insn;
1932 : 0 : df_ref def;
1933 : :
1934 : 0 : FOR_BB_INSNS (bb, insn)
1935 : : {
1936 : 0 : if (!INSN_P (insn))
1937 : 0 : continue;
1938 : :
1939 : 0 : FOR_EACH_INSN_DEF (def, insn)
1940 : 0 : if (DF_REF_REGNO (def) == regno)
1941 : : return def;
1942 : : }
1943 : : return NULL;
1944 : : }
1945 : :
1946 : :
1947 : : /* Return last def of REGNO within BB. */
1948 : :
1949 : : df_ref
1950 : 0 : df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1951 : : {
1952 : 0 : rtx_insn *insn;
1953 : 0 : df_ref def;
1954 : :
1955 : 0 : FOR_BB_INSNS_REVERSE (bb, insn)
1956 : : {
1957 : 0 : if (!INSN_P (insn))
1958 : 0 : continue;
1959 : :
1960 : 0 : FOR_EACH_INSN_DEF (def, insn)
1961 : 0 : if (DF_REF_REGNO (def) == regno)
1962 : : return def;
1963 : : }
1964 : :
1965 : : return NULL;
1966 : : }
1967 : :
1968 : : /* Return the one and only def of REGNO within BB. If there is no def or
1969 : : there are multiple defs, return NULL. */
1970 : :
1971 : : df_ref
1972 : 0 : df_bb_regno_only_def_find (basic_block bb, unsigned int regno)
1973 : : {
1974 : 0 : df_ref temp = df_bb_regno_first_def_find (bb, regno);
1975 : 0 : if (!temp)
1976 : : return NULL;
1977 : 0 : else if (temp == df_bb_regno_last_def_find (bb, regno))
1978 : : return temp;
1979 : : else
1980 : : return NULL;
1981 : : }
1982 : :
1983 : : /* Finds the reference corresponding to the definition of REG in INSN.
1984 : : DF is the dataflow object. */
1985 : :
1986 : : df_ref
1987 : 769811 : df_find_def (rtx_insn *insn, rtx reg)
1988 : : {
1989 : 769811 : df_ref def;
1990 : :
1991 : 769811 : if (GET_CODE (reg) == SUBREG)
1992 : 0 : reg = SUBREG_REG (reg);
1993 : 769811 : gcc_assert (REG_P (reg));
1994 : :
1995 : 1077124 : FOR_EACH_INSN_DEF (def, insn)
1996 : 1077124 : if (DF_REF_REGNO (def) == REGNO (reg))
1997 : : return def;
1998 : :
1999 : : return NULL;
2000 : : }
2001 : :
2002 : :
2003 : : /* Return true if REG is defined in INSN, zero otherwise. */
2004 : :
2005 : : bool
2006 : 0 : df_reg_defined (rtx_insn *insn, rtx reg)
2007 : : {
2008 : 0 : return df_find_def (insn, reg) != NULL;
2009 : : }
2010 : :
2011 : :
2012 : : /* Finds the reference corresponding to the use of REG in INSN.
2013 : : DF is the dataflow object. */
2014 : :
2015 : : df_ref
2016 : 5047674 : df_find_use (rtx_insn *insn, rtx reg)
2017 : : {
2018 : 5047674 : df_ref use;
2019 : :
2020 : 5047674 : if (GET_CODE (reg) == SUBREG)
2021 : 0 : reg = SUBREG_REG (reg);
2022 : 5047674 : gcc_assert (REG_P (reg));
2023 : :
2024 : 5047674 : df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2025 : 6048381 : FOR_EACH_INSN_INFO_USE (use, insn_info)
2026 : 6048381 : if (DF_REF_REGNO (use) == REGNO (reg))
2027 : : return use;
2028 : 0 : if (df->changeable_flags & DF_EQ_NOTES)
2029 : 0 : FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
2030 : 0 : if (DF_REF_REGNO (use) == REGNO (reg))
2031 : : return use;
2032 : : return NULL;
2033 : : }
2034 : :
2035 : :
2036 : : /* Return true if REG is referenced in INSN, zero otherwise. */
2037 : :
2038 : : bool
2039 : 0 : df_reg_used (rtx_insn *insn, rtx reg)
2040 : : {
2041 : 0 : return df_find_use (insn, reg) != NULL;
2042 : : }
2043 : :
2044 : : /* If REG has a single definition, return its known value, otherwise return
2045 : : null. */
2046 : :
2047 : : rtx
2048 : 8411159 : df_find_single_def_src (rtx reg)
2049 : : {
2050 : 8411159 : rtx src = NULL_RTX;
2051 : :
2052 : : /* Don't look through unbounded number of single definition REG copies,
2053 : : there might be loops for sources with uninitialized variables. */
2054 : 9149979 : for (int cnt = 0; cnt < 128; cnt++)
2055 : : {
2056 : 9149971 : df_ref adef = DF_REG_DEF_CHAIN (REGNO (reg));
2057 : 9149971 : if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
2058 : 6067887 : || DF_REF_IS_ARTIFICIAL (adef)
2059 : 5919878 : || (DF_REF_FLAGS (adef)
2060 : : & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
2061 : : return NULL_RTX;
2062 : :
2063 : 5919862 : rtx set = single_set (DF_REF_INSN (adef));
2064 : 5919862 : if (set == NULL || !rtx_equal_p (SET_DEST (set), reg))
2065 : 13705 : return NULL_RTX;
2066 : :
2067 : 5906157 : rtx note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
2068 : 5906157 : if (note && function_invariant_p (XEXP (note, 0)))
2069 : 152822 : return XEXP (note, 0);
2070 : 5753335 : src = SET_SRC (set);
2071 : :
2072 : 5753335 : if (REG_P (src))
2073 : : {
2074 : 738820 : reg = src;
2075 : 738820 : continue;
2076 : : }
2077 : : break;
2078 : : }
2079 : 5014523 : if (!function_invariant_p (src))
2080 : : return NULL_RTX;
2081 : :
2082 : : return src;
2083 : : }
2084 : :
2085 : :
2086 : : /*----------------------------------------------------------------------------
2087 : : Debugging and printing functions.
2088 : : ----------------------------------------------------------------------------*/
2089 : :
2090 : : /* Write information about registers and basic blocks into FILE.
2091 : : This is part of making a debugging dump. */
2092 : :
2093 : : void
2094 : 169 : dump_regset (regset r, FILE *outf)
2095 : : {
2096 : 169 : unsigned i;
2097 : 169 : reg_set_iterator rsi;
2098 : :
2099 : 169 : if (r == NULL)
2100 : : {
2101 : 0 : fputs (" (nil)", outf);
2102 : 0 : return;
2103 : : }
2104 : :
2105 : 2169 : EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
2106 : : {
2107 : 2000 : fprintf (outf, " %d", i);
2108 : 2000 : if (i < FIRST_PSEUDO_REGISTER)
2109 : 1285 : fprintf (outf, " [%s]",
2110 : : reg_names[i]);
2111 : : }
2112 : : }
2113 : :
2114 : : /* Print a human-readable representation of R on the standard error
2115 : : stream. This function is designed to be used from within the
2116 : : debugger. */
2117 : : extern void debug_regset (regset);
2118 : : DEBUG_FUNCTION void
2119 : 0 : debug_regset (regset r)
2120 : : {
2121 : 0 : dump_regset (r, stderr);
2122 : 0 : putc ('\n', stderr);
2123 : 0 : }
2124 : :
2125 : : /* Write information about registers and basic blocks into FILE.
2126 : : This is part of making a debugging dump. */
2127 : :
2128 : : void
2129 : 64011 : df_print_regset (FILE *file, const_bitmap r)
2130 : : {
2131 : 64011 : unsigned int i;
2132 : 64011 : bitmap_iterator bi;
2133 : :
2134 : 64011 : if (r == NULL)
2135 : 0 : fputs (" (nil)", file);
2136 : : else
2137 : : {
2138 : 752121 : EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
2139 : : {
2140 : 688110 : fprintf (file, " %d", i);
2141 : 688110 : if (i < FIRST_PSEUDO_REGISTER)
2142 : 622868 : fprintf (file, " [%s]", reg_names[i]);
2143 : : }
2144 : : }
2145 : 64011 : fprintf (file, "\n");
2146 : 64011 : }
2147 : :
2148 : :
2149 : : /* Write information about registers and basic blocks into FILE. The
2150 : : bitmap is in the form used by df_byte_lr. This is part of making a
2151 : : debugging dump. */
2152 : :
2153 : : void
2154 : 0 : df_print_word_regset (FILE *file, const_bitmap r)
2155 : : {
2156 : 0 : unsigned int max_reg = max_reg_num ();
2157 : :
2158 : 0 : if (r == NULL)
2159 : 0 : fputs (" (nil)", file);
2160 : : else
2161 : : {
2162 : : unsigned int i;
2163 : 0 : for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
2164 : : {
2165 : 0 : bool found = (bitmap_bit_p (r, 2 * i)
2166 : 0 : || bitmap_bit_p (r, 2 * i + 1));
2167 : 0 : if (found)
2168 : : {
2169 : 0 : int word;
2170 : 0 : const char * sep = "";
2171 : 0 : fprintf (file, " %d", i);
2172 : 0 : fprintf (file, "(");
2173 : 0 : for (word = 0; word < 2; word++)
2174 : 0 : if (bitmap_bit_p (r, 2 * i + word))
2175 : : {
2176 : 0 : fprintf (file, "%s%d", sep, word);
2177 : 0 : sep = ", ";
2178 : : }
2179 : 0 : fprintf (file, ")");
2180 : : }
2181 : : }
2182 : : }
2183 : 0 : fprintf (file, "\n");
2184 : 0 : }
2185 : :
2186 : :
2187 : : /* Dump dataflow info. */
2188 : :
2189 : : void
2190 : 434 : df_dump (FILE *file)
2191 : : {
2192 : 434 : basic_block bb;
2193 : 434 : df_dump_start (file);
2194 : :
2195 : 4788 : FOR_ALL_BB_FN (bb, cfun)
2196 : : {
2197 : 4354 : df_print_bb_index (bb, file);
2198 : 4354 : df_dump_top (bb, file);
2199 : 4354 : df_dump_bottom (bb, file);
2200 : : }
2201 : :
2202 : 434 : fprintf (file, "\n");
2203 : 434 : }
2204 : :
2205 : :
2206 : : /* Dump dataflow info for df->blocks_to_analyze. */
2207 : :
2208 : : void
2209 : 195 : df_dump_region (FILE *file)
2210 : : {
2211 : 195 : if (df->blocks_to_analyze)
2212 : : {
2213 : 195 : bitmap_iterator bi;
2214 : 195 : unsigned int bb_index;
2215 : :
2216 : 195 : fprintf (file, "\n\nstarting region dump\n");
2217 : 195 : df_dump_start (file);
2218 : :
2219 : 605 : EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
2220 : : {
2221 : 410 : basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
2222 : 410 : dump_bb (file, bb, 0, TDF_DETAILS);
2223 : : }
2224 : 195 : fprintf (file, "\n");
2225 : : }
2226 : : else
2227 : 0 : df_dump (file);
2228 : 195 : }
2229 : :
2230 : :
2231 : : /* Dump the introductory information for each problem defined. */
2232 : :
2233 : : void
2234 : 3852 : df_dump_start (FILE *file)
2235 : : {
2236 : 3852 : int i;
2237 : :
2238 : 3852 : if (!df || !file)
2239 : : return;
2240 : :
2241 : 3852 : fprintf (file, "\n\n%s\n", current_function_name ());
2242 : 3852 : fprintf (file, "\nDataflow summary:\n");
2243 : 3852 : if (df->blocks_to_analyze)
2244 : 493 : fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2245 : : DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2246 : :
2247 : 18439 : for (i = 0; i < df->num_problems_defined; i++)
2248 : : {
2249 : 14587 : struct dataflow *dflow = df->problems_in_order[i];
2250 : 14587 : if (dflow->computed)
2251 : : {
2252 : 13918 : df_dump_problem_function fun = dflow->problem->dump_start_fun;
2253 : 13918 : if (fun)
2254 : 4069 : fun (file);
2255 : : }
2256 : : }
2257 : : }
2258 : :
2259 : :
2260 : : /* Dump the top or bottom of the block information for BB. */
2261 : : static void
2262 : 11342 : df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2263 : : {
2264 : 11342 : int i;
2265 : :
2266 : 11342 : if (!df || !file)
2267 : : return;
2268 : :
2269 : 60746 : for (i = 0; i < df->num_problems_defined; i++)
2270 : : {
2271 : 49404 : struct dataflow *dflow = df->problems_in_order[i];
2272 : 49404 : if (dflow->computed)
2273 : : {
2274 : 44744 : df_dump_bb_problem_function bbfun;
2275 : :
2276 : 44744 : if (top)
2277 : 22372 : bbfun = dflow->problem->dump_top_fun;
2278 : : else
2279 : 22372 : bbfun = dflow->problem->dump_bottom_fun;
2280 : :
2281 : 44744 : if (bbfun)
2282 : 27683 : bbfun (bb, file);
2283 : : }
2284 : : }
2285 : : }
2286 : :
2287 : : /* Dump the top of the block information for BB. */
2288 : :
2289 : : void
2290 : 5671 : df_dump_top (basic_block bb, FILE *file)
2291 : : {
2292 : 5671 : df_dump_bb_problem_data (bb, file, /*top=*/true);
2293 : 5671 : }
2294 : :
2295 : : /* Dump the bottom of the block information for BB. */
2296 : :
2297 : : void
2298 : 5671 : df_dump_bottom (basic_block bb, FILE *file)
2299 : : {
2300 : 5671 : df_dump_bb_problem_data (bb, file, /*top=*/false);
2301 : 5671 : }
2302 : :
2303 : :
2304 : : /* Dump information about INSN just before or after dumping INSN itself. */
2305 : : static void
2306 : 38966 : df_dump_insn_problem_data (const rtx_insn *insn, FILE *file, bool top)
2307 : : {
2308 : 38966 : int i;
2309 : :
2310 : 38966 : if (!df || !file)
2311 : : return;
2312 : :
2313 : 162048 : for (i = 0; i < df->num_problems_defined; i++)
2314 : : {
2315 : 127748 : struct dataflow *dflow = df->problems_in_order[i];
2316 : 127748 : if (dflow->computed)
2317 : : {
2318 : 125036 : df_dump_insn_problem_function insnfun;
2319 : :
2320 : 125036 : if (top)
2321 : 62518 : insnfun = dflow->problem->dump_insn_top_fun;
2322 : : else
2323 : 62518 : insnfun = dflow->problem->dump_insn_bottom_fun;
2324 : :
2325 : 125036 : if (insnfun)
2326 : 4330 : insnfun (insn, file);
2327 : : }
2328 : : }
2329 : : }
2330 : :
2331 : : /* Dump information about INSN before dumping INSN itself. */
2332 : :
2333 : : void
2334 : 19483 : df_dump_insn_top (const rtx_insn *insn, FILE *file)
2335 : : {
2336 : 19483 : df_dump_insn_problem_data (insn, file, /*top=*/true);
2337 : 19483 : }
2338 : :
2339 : : /* Dump information about INSN after dumping INSN itself. */
2340 : :
2341 : : void
2342 : 19483 : df_dump_insn_bottom (const rtx_insn *insn, FILE *file)
2343 : : {
2344 : 19483 : df_dump_insn_problem_data (insn, file, /*top=*/false);
2345 : 19483 : }
2346 : :
2347 : :
2348 : : static void
2349 : 24508 : df_ref_dump (df_ref ref, FILE *file)
2350 : : {
2351 : 24508 : fprintf (file, "%c%d(%d)",
2352 : 24508 : DF_REF_REG_DEF_P (ref)
2353 : 16023 : ? 'd'
2354 : 16023 : : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2355 : : DF_REF_ID (ref),
2356 : : DF_REF_REGNO (ref));
2357 : 24508 : }
2358 : :
2359 : : void
2360 : 11342 : df_refs_chain_dump (df_ref ref, bool follow_chain, FILE *file)
2361 : : {
2362 : 11342 : fprintf (file, "{ ");
2363 : 47192 : for (; ref; ref = DF_REF_NEXT_LOC (ref))
2364 : : {
2365 : 24508 : df_ref_dump (ref, file);
2366 : 24508 : if (follow_chain)
2367 : 24508 : df_chain_dump (DF_REF_CHAIN (ref), file);
2368 : : }
2369 : 11342 : fprintf (file, "}");
2370 : 11342 : }
2371 : :
2372 : :
2373 : : /* Dump either a ref-def or reg-use chain. */
2374 : :
2375 : : void
2376 : 0 : df_regs_chain_dump (df_ref ref, FILE *file)
2377 : : {
2378 : 0 : fprintf (file, "{ ");
2379 : 0 : while (ref)
2380 : : {
2381 : 0 : df_ref_dump (ref, file);
2382 : 0 : ref = DF_REF_NEXT_REG (ref);
2383 : : }
2384 : 0 : fprintf (file, "}");
2385 : 0 : }
2386 : :
2387 : :
2388 : : static void
2389 : 0 : df_mws_dump (struct df_mw_hardreg *mws, FILE *file)
2390 : : {
2391 : 0 : for (; mws; mws = DF_MWS_NEXT (mws))
2392 : 0 : fprintf (file, "mw %c r[%d..%d]\n",
2393 : 0 : DF_MWS_REG_DEF_P (mws) ? 'd' : 'u',
2394 : : mws->start_regno, mws->end_regno);
2395 : 0 : }
2396 : :
2397 : :
2398 : : static void
2399 : 0 : df_insn_uid_debug (unsigned int uid,
2400 : : bool follow_chain, FILE *file)
2401 : : {
2402 : 0 : fprintf (file, "insn %d luid %d",
2403 : 0 : uid, DF_INSN_UID_LUID (uid));
2404 : :
2405 : 0 : if (DF_INSN_UID_DEFS (uid))
2406 : : {
2407 : 0 : fprintf (file, " defs ");
2408 : 0 : df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2409 : : }
2410 : :
2411 : 0 : if (DF_INSN_UID_USES (uid))
2412 : : {
2413 : 0 : fprintf (file, " uses ");
2414 : 0 : df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2415 : : }
2416 : :
2417 : 0 : if (DF_INSN_UID_EQ_USES (uid))
2418 : : {
2419 : 0 : fprintf (file, " eq uses ");
2420 : 0 : df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2421 : : }
2422 : :
2423 : 0 : if (DF_INSN_UID_MWS (uid))
2424 : : {
2425 : 0 : fprintf (file, " mws ");
2426 : 0 : df_mws_dump (DF_INSN_UID_MWS (uid), file);
2427 : : }
2428 : 0 : fprintf (file, "\n");
2429 : 0 : }
2430 : :
2431 : :
2432 : : DEBUG_FUNCTION void
2433 : 0 : df_insn_debug (rtx_insn *insn, bool follow_chain, FILE *file)
2434 : : {
2435 : 0 : df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2436 : 0 : }
2437 : :
2438 : : DEBUG_FUNCTION void
2439 : 0 : df_insn_debug_regno (rtx_insn *insn, FILE *file)
2440 : : {
2441 : 0 : struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2442 : :
2443 : 0 : fprintf (file, "insn %d bb %d luid %d defs ",
2444 : 0 : INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2445 : : DF_INSN_INFO_LUID (insn_info));
2446 : 0 : df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2447 : :
2448 : 0 : fprintf (file, " uses ");
2449 : 0 : df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2450 : :
2451 : 0 : fprintf (file, " eq_uses ");
2452 : 0 : df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2453 : 0 : fprintf (file, "\n");
2454 : 0 : }
2455 : :
2456 : : DEBUG_FUNCTION void
2457 : 0 : df_regno_debug (unsigned int regno, FILE *file)
2458 : : {
2459 : 0 : fprintf (file, "reg %d defs ", regno);
2460 : 0 : df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2461 : 0 : fprintf (file, " uses ");
2462 : 0 : df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2463 : 0 : fprintf (file, " eq_uses ");
2464 : 0 : df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2465 : 0 : fprintf (file, "\n");
2466 : 0 : }
2467 : :
2468 : :
2469 : : DEBUG_FUNCTION void
2470 : 0 : df_ref_debug (df_ref ref, FILE *file)
2471 : : {
2472 : 0 : fprintf (file, "%c%d ",
2473 : 0 : DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2474 : : DF_REF_ID (ref));
2475 : 0 : fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2476 : : DF_REF_REGNO (ref),
2477 : 0 : DF_REF_BBNO (ref),
2478 : 0 : DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2479 : 0 : DF_REF_FLAGS (ref),
2480 : 0 : DF_REF_TYPE (ref));
2481 : 0 : if (DF_REF_LOC (ref))
2482 : : {
2483 : 0 : if (flag_dump_noaddr)
2484 : 0 : fprintf (file, "loc #(#) chain ");
2485 : : else
2486 : 0 : fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2487 : : (void *)*DF_REF_LOC (ref));
2488 : : }
2489 : : else
2490 : 0 : fprintf (file, "chain ");
2491 : 0 : df_chain_dump (DF_REF_CHAIN (ref), file);
2492 : 0 : fprintf (file, "\n");
2493 : 0 : }
2494 : :
2495 : : /* Functions for debugging from GDB. */
2496 : :
2497 : : DEBUG_FUNCTION void
2498 : 0 : debug_df_insn (rtx_insn *insn)
2499 : : {
2500 : 0 : df_insn_debug (insn, true, stderr);
2501 : 0 : debug_rtx (insn);
2502 : 0 : }
2503 : :
2504 : :
2505 : : DEBUG_FUNCTION void
2506 : 0 : debug_df_reg (rtx reg)
2507 : : {
2508 : 0 : df_regno_debug (REGNO (reg), stderr);
2509 : 0 : }
2510 : :
2511 : :
2512 : : DEBUG_FUNCTION void
2513 : 0 : debug_df_regno (unsigned int regno)
2514 : : {
2515 : 0 : df_regno_debug (regno, stderr);
2516 : 0 : }
2517 : :
2518 : :
2519 : : DEBUG_FUNCTION void
2520 : 0 : debug_df_ref (df_ref ref)
2521 : : {
2522 : 0 : df_ref_debug (ref, stderr);
2523 : 0 : }
2524 : :
2525 : :
2526 : : DEBUG_FUNCTION void
2527 : 0 : debug_df_defno (unsigned int defno)
2528 : : {
2529 : 0 : df_ref_debug (DF_DEFS_GET (defno), stderr);
2530 : 0 : }
2531 : :
2532 : :
2533 : : DEBUG_FUNCTION void
2534 : 0 : debug_df_useno (unsigned int defno)
2535 : : {
2536 : 0 : df_ref_debug (DF_USES_GET (defno), stderr);
2537 : 0 : }
2538 : :
2539 : :
2540 : : DEBUG_FUNCTION void
2541 : 0 : debug_df_chain (struct df_link *link)
2542 : : {
2543 : 0 : df_chain_dump (link, stderr);
2544 : 0 : fputc ('\n', stderr);
2545 : 0 : }
|