Branch data Line data Source code
1 : : /* Search an insn for pseudo regs that must be in hard regs and are not.
2 : : Copyright (C) 1987-2025 Free Software Foundation, Inc.
3 : :
4 : : This file is part of GCC.
5 : :
6 : : GCC is free software; you can redistribute it and/or modify it under
7 : : the terms of the GNU General Public License as published by the Free
8 : : Software Foundation; either version 3, or (at your option) any later
9 : : version.
10 : :
11 : : GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 : : WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 : : FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 : : for more details.
15 : :
16 : : You should have received a copy of the GNU General Public License
17 : : along with GCC; see the file COPYING3. If not see
18 : : <http://www.gnu.org/licenses/>. */
19 : :
20 : : /* This file contains subroutines used only from the file reload1.cc.
21 : : It knows how to scan one insn for operands and values
22 : : that need to be copied into registers to make valid code.
23 : : It also finds other operands and values which are valid
24 : : but for which equivalent values in registers exist and
25 : : ought to be used instead.
26 : :
27 : : Before processing the first insn of the function, call `init_reload'.
28 : : init_reload actually has to be called earlier anyway.
29 : :
30 : : To scan an insn, call `find_reloads'. This does two things:
31 : : 1. sets up tables describing which values must be reloaded
32 : : for this insn, and what kind of hard regs they must be reloaded into;
33 : : 2. optionally record the locations where those values appear in
34 : : the data, so they can be replaced properly later.
35 : : This is done only if the second arg to `find_reloads' is nonzero.
36 : :
37 : : The third arg to `find_reloads' specifies the number of levels
38 : : of indirect addressing supported by the machine. If it is zero,
39 : : indirect addressing is not valid. If it is one, (MEM (REG n))
40 : : is valid even if (REG n) did not get a hard register; if it is two,
41 : : (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 : : hard register, and similarly for higher values.
43 : :
44 : : Then you must choose the hard regs to reload those pseudo regs into,
45 : : and generate appropriate load insns before this insn and perhaps
46 : : also store insns after this insn. Set up the array `reload_reg_rtx'
47 : : to contain the REG rtx's for the registers you used. In some
48 : : cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 : : for certain reloads. Then that tells you which register to use,
50 : : so you do not need to allocate one. But you still do need to add extra
51 : : instructions to copy the value into and out of that register.
52 : :
53 : : Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 : : into the locations already recorded.
55 : :
56 : : NOTE SIDE EFFECTS:
57 : :
58 : : find_reloads can alter the operands of the instruction it is called on.
59 : :
60 : : 1. Two operands of any sort may be interchanged, if they are in a
61 : : commutative instruction.
62 : : This happens only if find_reloads thinks the instruction will compile
63 : : better that way.
64 : :
65 : : 2. Pseudo-registers that are equivalent to constants are replaced
66 : : with those constants if they are not in hard registers.
67 : :
68 : : 1 happens every time find_reloads is called.
69 : : 2 happens only when REPLACE is 1, which is only when
70 : : actually doing the reloads, not when just counting them.
71 : :
72 : : Using a reload register for several reloads in one insn:
73 : :
74 : : When an insn has reloads, it is considered as having three parts:
75 : : the input reloads, the insn itself after reloading, and the output reloads.
76 : : Reloads of values used in memory addresses are often needed for only one part.
77 : :
78 : : When this is so, reload_when_needed records which part needs the reload.
79 : : Two reloads for different parts of the insn can share the same reload
80 : : register.
81 : :
82 : : When a reload is used for addresses in multiple parts, or when it is
83 : : an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 : : a register with any other reload. */
85 : :
86 : : #define REG_OK_STRICT
87 : :
88 : : /* We do not enable this with CHECKING_P, since it is awfully slow. */
89 : : #undef DEBUG_RELOAD
90 : :
91 : : #include "config.h"
92 : : #include "system.h"
93 : : #include "coretypes.h"
94 : : #include "backend.h"
95 : : #include "target.h"
96 : : #include "rtl.h"
97 : : #include "tree.h"
98 : : #include "df.h"
99 : : #include "memmodel.h"
100 : : #include "tm_p.h"
101 : : #include "optabs.h"
102 : : #include "regs.h"
103 : : #include "ira.h"
104 : : #include "recog.h"
105 : : #include "rtl-error.h"
106 : : #include "reload.h"
107 : : #include "addresses.h"
108 : : #include "function-abi.h"
109 : :
110 : : /* True if X is a constant that can be forced into the constant pool.
111 : : MODE is the mode of the operand, or VOIDmode if not known. */
112 : : #define CONST_POOL_OK_P(MODE, X) \
113 : : ((MODE) != VOIDmode \
114 : : && CONSTANT_P (X) \
115 : : && GET_CODE (X) != HIGH \
116 : : && !targetm.cannot_force_const_mem (MODE, X))
117 : :
118 : : /* True if C is a non-empty register class that has too few registers
119 : : to be safely used as a reload target class. */
120 : :
121 : : static inline bool
122 : 0 : small_register_class_p (reg_class_t rclass)
123 : : {
124 : 0 : return (reg_class_size [(int) rclass] == 1
125 : 0 : || (reg_class_size [(int) rclass] >= 1
126 : 0 : && targetm.class_likely_spilled_p (rclass)));
127 : : }
128 : :
129 : :
130 : : /* All reloads of the current insn are recorded here. See reload.h for
131 : : comments. */
132 : : int n_reloads;
133 : : struct reload rld[MAX_RELOADS];
134 : :
135 : : /* All the "earlyclobber" operands of the current insn
136 : : are recorded here. */
137 : : int n_earlyclobbers;
138 : : rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 : :
140 : : int reload_n_operands;
141 : :
142 : : /* Replacing reloads.
143 : :
144 : : If `replace_reloads' is nonzero, then as each reload is recorded
145 : : an entry is made for it in the table `replacements'.
146 : : Then later `subst_reloads' can look through that table and
147 : : perform all the replacements needed. */
148 : :
149 : : /* Nonzero means record the places to replace. */
150 : : static int replace_reloads;
151 : :
152 : : /* Each replacement is recorded with a structure like this. */
153 : : struct replacement
154 : : {
155 : : rtx *where; /* Location to store in */
156 : : int what; /* which reload this is for */
157 : : machine_mode mode; /* mode it must have */
158 : : };
159 : :
160 : : static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
161 : :
162 : : /* Number of replacements currently recorded. */
163 : : static int n_replacements;
164 : :
165 : : /* Used to track what is modified by an operand. */
166 : : struct decomposition
167 : : {
168 : : int reg_flag; /* Nonzero if referencing a register. */
169 : : int safe; /* Nonzero if this can't conflict with anything. */
170 : : rtx base; /* Base address for MEM. */
171 : : poly_int64 start; /* Starting offset or register number. */
172 : : poly_int64 end; /* Ending offset or register number. */
173 : : };
174 : :
175 : : /* Save MEMs needed to copy from one class of registers to another. One MEM
176 : : is used per mode, but normally only one or two modes are ever used.
177 : :
178 : : We keep two versions, before and after register elimination. The one
179 : : after register elimination is record separately for each operand. This
180 : : is done in case the address is not valid to be sure that we separately
181 : : reload each. */
182 : :
183 : : static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 : : static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 : : static int secondary_memlocs_elim_used = 0;
186 : :
187 : : /* The instruction we are doing reloads for;
188 : : so we can test whether a register dies in it. */
189 : : static rtx_insn *this_insn;
190 : :
191 : : /* Nonzero if this instruction is a user-specified asm with operands. */
192 : : static int this_insn_is_asm;
193 : :
194 : : /* If hard_regs_live_known is nonzero,
195 : : we can tell which hard regs are currently live,
196 : : at least enough to succeed in choosing dummy reloads. */
197 : : static int hard_regs_live_known;
198 : :
199 : : /* Indexed by hard reg number,
200 : : element is nonnegative if hard reg has been spilled.
201 : : This vector is passed to `find_reloads' as an argument
202 : : and is not changed here. */
203 : : static short *static_reload_reg_p;
204 : :
205 : : /* Set to 1 in subst_reg_equivs if it changes anything. */
206 : : static int subst_reg_equivs_changed;
207 : :
208 : : /* On return from push_reload, holds the reload-number for the OUT
209 : : operand, which can be different for that from the input operand. */
210 : : static int output_reloadnum;
211 : :
212 : : /* Compare two RTX's. */
213 : : #define MATCHES(x, y) \
214 : : (x == y || (x != 0 && (REG_P (x) \
215 : : ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : : : rtx_equal_p (x, y) && ! side_effects_p (x))))
217 : :
218 : : /* Indicates if two reloads purposes are for similar enough things that we
219 : : can merge their reloads. */
220 : : #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 : : ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 : : || ((when1) == (when2) && (op1) == (op2)) \
223 : : || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 : : || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 : : && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 : : || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 : : && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 : :
229 : : /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 : : #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 : : ((when1) != (when2) \
232 : : || ! ((op1) == (op2) \
233 : : || (when1) == RELOAD_FOR_INPUT \
234 : : || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 : : || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 : :
237 : : /* If we are going to reload an address, compute the reload type to
238 : : use. */
239 : : #define ADDR_TYPE(type) \
240 : : ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 : : ? RELOAD_FOR_INPADDR_ADDRESS \
242 : : : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 : : ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : : : (type)))
245 : :
246 : : static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 : : machine_mode, enum reload_type,
248 : : enum insn_code *, secondary_reload_info *);
249 : : static enum reg_class find_valid_class (machine_mode, machine_mode,
250 : : int, unsigned int);
251 : : static void push_replacement (rtx *, int, machine_mode);
252 : : static void dup_replacements (rtx *, rtx *);
253 : : static void combine_reloads (void);
254 : : static int find_reusable_reload (rtx *, rtx, enum reg_class,
255 : : enum reload_type, int, int);
256 : : static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
257 : : machine_mode, reg_class_t, int, int);
258 : : static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
259 : : static struct decomposition decompose (rtx);
260 : : static int immune_p (rtx, rtx, struct decomposition);
261 : : static bool alternative_allows_const_pool_ref (rtx, const char *, int);
262 : : static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
263 : : rtx_insn *, int *);
264 : : static rtx make_memloc (rtx, int);
265 : : static bool maybe_memory_address_addr_space_p (machine_mode, rtx,
266 : : addr_space_t, rtx *);
267 : : static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
268 : : int, enum reload_type, int, rtx_insn *);
269 : : static rtx subst_reg_equivs (rtx, rtx_insn *);
270 : : static rtx subst_indexed_address (rtx);
271 : : static void update_auto_inc_notes (rtx_insn *, int, int);
272 : : static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
273 : : enum rtx_code, enum rtx_code, rtx *,
274 : : int, enum reload_type,int, rtx_insn *);
275 : : static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 : : machine_mode, int,
277 : : enum reload_type, int);
278 : : static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
279 : : int, rtx_insn *, int *);
280 : : static void copy_replacements_1 (rtx *, rtx *, int);
281 : : static poly_int64 find_inc_amount (rtx, rtx);
282 : : static int refers_to_mem_for_reload_p (rtx);
283 : : static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 : : rtx, rtx *);
285 : :
286 : : /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
287 : : list yet. */
288 : :
289 : : static void
290 : 0 : push_reg_equiv_alt_mem (int regno, rtx mem)
291 : : {
292 : 0 : rtx it;
293 : :
294 : 0 : for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
295 : 0 : if (rtx_equal_p (XEXP (it, 0), mem))
296 : : return;
297 : :
298 : 0 : reg_equiv_alt_mem_list (regno)
299 : 0 : = alloc_EXPR_LIST (REG_EQUIV, mem,
300 : 0 : reg_equiv_alt_mem_list (regno));
301 : : }
302 : :
303 : : /* Determine if any secondary reloads are needed for loading (if IN_P is
304 : : nonzero) or storing (if IN_P is zero) X to or from a reload register of
305 : : register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
306 : : are needed, push them.
307 : :
308 : : Return the reload number of the secondary reload we made, or -1 if
309 : : we didn't need one. *PICODE is set to the insn_code to use if we do
310 : : need a secondary reload. */
311 : :
312 : : static int
313 : 0 : push_secondary_reload (int in_p, rtx x, int opnum, int optional,
314 : : enum reg_class reload_class,
315 : : machine_mode reload_mode, enum reload_type type,
316 : : enum insn_code *picode, secondary_reload_info *prev_sri)
317 : : {
318 : 0 : enum reg_class rclass = NO_REGS;
319 : 0 : enum reg_class scratch_class;
320 : 0 : machine_mode mode = reload_mode;
321 : 0 : enum insn_code icode = CODE_FOR_nothing;
322 : 0 : enum insn_code t_icode = CODE_FOR_nothing;
323 : 0 : enum reload_type secondary_type;
324 : 0 : int s_reload, t_reload = -1;
325 : 0 : const char *scratch_constraint;
326 : 0 : secondary_reload_info sri;
327 : :
328 : 0 : if (type == RELOAD_FOR_INPUT_ADDRESS
329 : 0 : || type == RELOAD_FOR_OUTPUT_ADDRESS
330 : : || type == RELOAD_FOR_INPADDR_ADDRESS
331 : : || type == RELOAD_FOR_OUTADDR_ADDRESS)
332 : : secondary_type = type;
333 : : else
334 : 0 : secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
335 : :
336 : 0 : *picode = CODE_FOR_nothing;
337 : :
338 : : /* If X is a paradoxical SUBREG, use the inner value to determine both the
339 : : mode and object being reloaded. */
340 : 0 : if (paradoxical_subreg_p (x))
341 : : {
342 : 0 : x = SUBREG_REG (x);
343 : 0 : reload_mode = GET_MODE (x);
344 : : }
345 : :
346 : : /* If X is a pseudo-register that has an equivalent MEM (actually, if it
347 : : is still a pseudo-register by now, it *must* have an equivalent MEM
348 : : but we don't want to assume that), use that equivalent when seeing if
349 : : a secondary reload is needed since whether or not a reload is needed
350 : : might be sensitive to the form of the MEM. */
351 : :
352 : 0 : if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
353 : 0 : && reg_equiv_mem (REGNO (x)))
354 : : x = reg_equiv_mem (REGNO (x));
355 : :
356 : 0 : sri.icode = CODE_FOR_nothing;
357 : 0 : sri.prev_sri = prev_sri;
358 : 0 : rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
359 : : reload_mode, &sri);
360 : 0 : icode = (enum insn_code) sri.icode;
361 : :
362 : : /* If we don't need any secondary registers, done. */
363 : 0 : if (rclass == NO_REGS && icode == CODE_FOR_nothing)
364 : : return -1;
365 : :
366 : 0 : if (rclass != NO_REGS)
367 : 0 : t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
368 : : reload_mode, type, &t_icode, &sri);
369 : :
370 : : /* If we will be using an insn, the secondary reload is for a
371 : : scratch register. */
372 : :
373 : 0 : if (icode != CODE_FOR_nothing)
374 : : {
375 : : /* If IN_P is nonzero, the reload register will be the output in
376 : : operand 0. If IN_P is zero, the reload register will be the input
377 : : in operand 1. Outputs should have an initial "=", which we must
378 : : skip. */
379 : :
380 : : /* ??? It would be useful to be able to handle only two, or more than
381 : : three, operands, but for now we can only handle the case of having
382 : : exactly three: output, input and one temp/scratch. */
383 : 0 : gcc_assert (insn_data[(int) icode].n_operands == 3);
384 : :
385 : : /* ??? We currently have no way to represent a reload that needs
386 : : an icode to reload from an intermediate tertiary reload register.
387 : : We should probably have a new field in struct reload to tag a
388 : : chain of scratch operand reloads onto. */
389 : 0 : gcc_assert (rclass == NO_REGS);
390 : :
391 : 0 : scratch_constraint = insn_data[(int) icode].operand[2].constraint;
392 : 0 : gcc_assert (*scratch_constraint == '=');
393 : 0 : scratch_constraint++;
394 : 0 : if (*scratch_constraint == '&')
395 : 0 : scratch_constraint++;
396 : 0 : scratch_class = (reg_class_for_constraint
397 : 0 : (lookup_constraint (scratch_constraint)));
398 : :
399 : 0 : rclass = scratch_class;
400 : 0 : mode = insn_data[(int) icode].operand[2].mode;
401 : : }
402 : :
403 : : /* This case isn't valid, so fail. Reload is allowed to use the same
404 : : register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405 : : in the case of a secondary register, we actually need two different
406 : : registers for correct code. We fail here to prevent the possibility of
407 : : silently generating incorrect code later.
408 : :
409 : : The convention is that secondary input reloads are valid only if the
410 : : secondary_class is different from class. If you have such a case, you
411 : : cannot use secondary reloads, you must work around the problem some
412 : : other way.
413 : :
414 : : Allow this when a reload_in/out pattern is being used. I.e. assume
415 : : that the generated code handles this case. */
416 : :
417 : 0 : gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
418 : : || t_icode != CODE_FOR_nothing);
419 : :
420 : : /* See if we can reuse an existing secondary reload. */
421 : 0 : for (s_reload = 0; s_reload < n_reloads; s_reload++)
422 : 0 : if (rld[s_reload].secondary_p
423 : 0 : && (reg_class_subset_p (rclass, rld[s_reload].rclass)
424 : 0 : || reg_class_subset_p (rld[s_reload].rclass, rclass))
425 : 0 : && ((in_p && rld[s_reload].inmode == mode)
426 : 0 : || (! in_p && rld[s_reload].outmode == mode))
427 : 0 : && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
428 : 0 : || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
429 : 0 : && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
430 : 0 : || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
431 : 0 : && (small_register_class_p (rclass)
432 : 0 : || targetm.small_register_classes_for_mode_p (VOIDmode))
433 : 0 : && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
434 : : opnum, rld[s_reload].opnum))
435 : : {
436 : 0 : if (in_p)
437 : 0 : rld[s_reload].inmode = mode;
438 : 0 : if (! in_p)
439 : 0 : rld[s_reload].outmode = mode;
440 : :
441 : 0 : if (reg_class_subset_p (rclass, rld[s_reload].rclass))
442 : 0 : rld[s_reload].rclass = rclass;
443 : :
444 : 0 : rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
445 : 0 : rld[s_reload].optional &= optional;
446 : 0 : rld[s_reload].secondary_p = 1;
447 : 0 : if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
448 : : opnum, rld[s_reload].opnum))
449 : 0 : rld[s_reload].when_needed = RELOAD_OTHER;
450 : :
451 : : break;
452 : : }
453 : :
454 : 0 : if (s_reload == n_reloads)
455 : : {
456 : : /* If we need a memory location to copy between the two reload regs,
457 : : set it up now. Note that we do the input case before making
458 : : the reload and the output case after. This is due to the
459 : : way reloads are output. */
460 : :
461 : 0 : if (in_p && icode == CODE_FOR_nothing
462 : 0 : && targetm.secondary_memory_needed (mode, rclass, reload_class))
463 : : {
464 : 0 : get_secondary_mem (x, reload_mode, opnum, type);
465 : :
466 : : /* We may have just added new reloads. Make sure we add
467 : : the new reload at the end. */
468 : 0 : s_reload = n_reloads;
469 : : }
470 : :
471 : : /* We need to make a new secondary reload for this register class. */
472 : 0 : rld[s_reload].in = rld[s_reload].out = 0;
473 : 0 : rld[s_reload].rclass = rclass;
474 : :
475 : 0 : rld[s_reload].inmode = in_p ? mode : VOIDmode;
476 : 0 : rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
477 : 0 : rld[s_reload].reg_rtx = 0;
478 : 0 : rld[s_reload].optional = optional;
479 : 0 : rld[s_reload].inc = 0;
480 : : /* Maybe we could combine these, but it seems too tricky. */
481 : 0 : rld[s_reload].nocombine = 1;
482 : 0 : rld[s_reload].in_reg = 0;
483 : 0 : rld[s_reload].out_reg = 0;
484 : 0 : rld[s_reload].opnum = opnum;
485 : 0 : rld[s_reload].when_needed = secondary_type;
486 : 0 : rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
487 : 0 : rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
488 : 0 : rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
489 : 0 : rld[s_reload].secondary_out_icode
490 : 0 : = ! in_p ? t_icode : CODE_FOR_nothing;
491 : 0 : rld[s_reload].secondary_p = 1;
492 : :
493 : 0 : n_reloads++;
494 : :
495 : 0 : if (! in_p && icode == CODE_FOR_nothing
496 : 0 : && targetm.secondary_memory_needed (mode, reload_class, rclass))
497 : 0 : get_secondary_mem (x, mode, opnum, type);
498 : : }
499 : :
500 : 0 : *picode = icode;
501 : 0 : return s_reload;
502 : : }
503 : :
504 : : /* If a secondary reload is needed, return its class. If both an intermediate
505 : : register and a scratch register is needed, we return the class of the
506 : : intermediate register. */
507 : : reg_class_t
508 : 0 : secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
509 : : rtx x)
510 : : {
511 : 0 : enum insn_code icode;
512 : 0 : secondary_reload_info sri;
513 : :
514 : 0 : sri.icode = CODE_FOR_nothing;
515 : 0 : sri.prev_sri = NULL;
516 : 0 : rclass
517 : 0 : = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
518 : 0 : icode = (enum insn_code) sri.icode;
519 : :
520 : : /* If there are no secondary reloads at all, we return NO_REGS.
521 : : If an intermediate register is needed, we return its class. */
522 : 0 : if (icode == CODE_FOR_nothing || rclass != NO_REGS)
523 : : return rclass;
524 : :
525 : : /* No intermediate register is needed, but we have a special reload
526 : : pattern, which we assume for now needs a scratch register. */
527 : 0 : return scratch_reload_class (icode);
528 : : }
529 : :
530 : : /* ICODE is the insn_code of a reload pattern. Check that it has exactly
531 : : three operands, verify that operand 2 is an output operand, and return
532 : : its register class.
533 : : ??? We'd like to be able to handle any pattern with at least 2 operands,
534 : : for zero or more scratch registers, but that needs more infrastructure. */
535 : : enum reg_class
536 : 0 : scratch_reload_class (enum insn_code icode)
537 : : {
538 : 0 : const char *scratch_constraint;
539 : 0 : enum reg_class rclass;
540 : :
541 : 0 : gcc_assert (insn_data[(int) icode].n_operands == 3);
542 : 0 : scratch_constraint = insn_data[(int) icode].operand[2].constraint;
543 : 0 : gcc_assert (*scratch_constraint == '=');
544 : 0 : scratch_constraint++;
545 : 0 : if (*scratch_constraint == '&')
546 : 0 : scratch_constraint++;
547 : 0 : rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
548 : 0 : gcc_assert (rclass != NO_REGS);
549 : 0 : return rclass;
550 : : }
551 : :
552 : : /* Return a memory location that will be used to copy X in mode MODE.
553 : : If we haven't already made a location for this mode in this insn,
554 : : call find_reloads_address on the location being returned. */
555 : :
556 : : rtx
557 : 0 : get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
558 : : int opnum, enum reload_type type)
559 : : {
560 : 0 : rtx loc;
561 : 0 : int mem_valid;
562 : :
563 : : /* By default, if MODE is narrower than a word, widen it to a word.
564 : : This is required because most machines that require these memory
565 : : locations do not support short load and stores from all registers
566 : : (e.g., FP registers). */
567 : :
568 : 0 : mode = targetm.secondary_memory_needed_mode (mode);
569 : :
570 : : /* If we already have made a MEM for this operand in MODE, return it. */
571 : 0 : if (secondary_memlocs_elim[(int) mode][opnum] != 0)
572 : : return secondary_memlocs_elim[(int) mode][opnum];
573 : :
574 : : /* If this is the first time we've tried to get a MEM for this mode,
575 : : allocate a new one. `something_changed' in reload will get set
576 : : by noticing that the frame size has changed. */
577 : :
578 : 0 : if (secondary_memlocs[(int) mode] == 0)
579 : : {
580 : : #ifdef SECONDARY_MEMORY_NEEDED_RTX
581 : : secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
582 : : #else
583 : 0 : secondary_memlocs[(int) mode]
584 : 0 : = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
585 : : #endif
586 : : }
587 : :
588 : : /* Get a version of the address doing any eliminations needed. If that
589 : : didn't give us a new MEM, make a new one if it isn't valid. */
590 : :
591 : 0 : loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
592 : 0 : mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
593 : 0 : MEM_ADDR_SPACE (loc));
594 : :
595 : 0 : if (! mem_valid && loc == secondary_memlocs[(int) mode])
596 : 0 : loc = copy_rtx (loc);
597 : :
598 : : /* The only time the call below will do anything is if the stack
599 : : offset is too large. In that case IND_LEVELS doesn't matter, so we
600 : : can just pass a zero. Adjust the type to be the address of the
601 : : corresponding object. If the address was valid, save the eliminated
602 : : address. If it wasn't valid, we need to make a reload each time, so
603 : : don't save it. */
604 : :
605 : 0 : if (! mem_valid)
606 : : {
607 : 0 : type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
608 : 0 : : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
609 : : : RELOAD_OTHER);
610 : :
611 : 0 : find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
612 : : opnum, type, 0, 0);
613 : : }
614 : :
615 : 0 : secondary_memlocs_elim[(int) mode][opnum] = loc;
616 : 0 : if (secondary_memlocs_elim_used <= (int)mode)
617 : 0 : secondary_memlocs_elim_used = (int)mode + 1;
618 : : return loc;
619 : : }
620 : :
621 : : /* Clear any secondary memory locations we've made. */
622 : :
623 : : void
624 : 0 : clear_secondary_mem (void)
625 : : {
626 : 0 : memset (secondary_memlocs, 0, sizeof secondary_memlocs);
627 : 0 : }
628 : :
629 : :
630 : : /* Find the largest class which has at least one register valid in
631 : : mode INNER, and which for every such register, that register number
632 : : plus N is also valid in OUTER (if in range) and is cheap to move
633 : : into REGNO. Such a class must exist. */
634 : :
635 : : static enum reg_class
636 : 0 : find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
637 : : machine_mode inner ATTRIBUTE_UNUSED, int n,
638 : : unsigned int dest_regno ATTRIBUTE_UNUSED)
639 : : {
640 : 0 : int best_cost = -1;
641 : 0 : int rclass;
642 : 0 : int regno;
643 : 0 : enum reg_class best_class = NO_REGS;
644 : 0 : enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
645 : 0 : unsigned int best_size = 0;
646 : 0 : int cost;
647 : :
648 : 0 : for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
649 : : {
650 : : int bad = 0;
651 : : int good = 0;
652 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
653 : 0 : if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
654 : : {
655 : 0 : if (targetm.hard_regno_mode_ok (regno, inner))
656 : : {
657 : 0 : good = 1;
658 : 0 : if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
659 : 0 : && !targetm.hard_regno_mode_ok (regno + n, outer))
660 : : bad = 1;
661 : : }
662 : : }
663 : :
664 : 0 : if (bad || !good)
665 : 0 : continue;
666 : 0 : cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
667 : :
668 : 0 : if ((reg_class_size[rclass] > best_size
669 : 0 : && (best_cost < 0 || best_cost >= cost))
670 : 0 : || best_cost > cost)
671 : : {
672 : 0 : best_class = (enum reg_class) rclass;
673 : 0 : best_size = reg_class_size[rclass];
674 : 0 : best_cost = register_move_cost (outer, (enum reg_class) rclass,
675 : : dest_class);
676 : : }
677 : : }
678 : :
679 : 0 : gcc_assert (best_size != 0);
680 : :
681 : 0 : return best_class;
682 : : }
683 : :
684 : : /* We are trying to reload a subreg of something that is not a register.
685 : : Find the largest class which contains only registers valid in
686 : : mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
687 : : which we would eventually like to obtain the object. */
688 : :
689 : : static enum reg_class
690 : 0 : find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
691 : : machine_mode mode ATTRIBUTE_UNUSED,
692 : : enum reg_class dest_class ATTRIBUTE_UNUSED)
693 : : {
694 : 0 : int best_cost = -1;
695 : 0 : int rclass;
696 : 0 : int regno;
697 : 0 : enum reg_class best_class = NO_REGS;
698 : 0 : unsigned int best_size = 0;
699 : 0 : int cost;
700 : :
701 : 0 : for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
702 : : {
703 : : unsigned int computed_rclass_size = 0;
704 : :
705 : 0 : for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
706 : : {
707 : 0 : if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
708 : 0 : && targetm.hard_regno_mode_ok (regno, mode))
709 : 0 : computed_rclass_size++;
710 : : }
711 : :
712 : 0 : cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
713 : :
714 : 0 : if ((computed_rclass_size > best_size
715 : 0 : && (best_cost < 0 || best_cost >= cost))
716 : 0 : || best_cost > cost)
717 : : {
718 : 0 : best_class = (enum reg_class) rclass;
719 : 0 : best_size = computed_rclass_size;
720 : 0 : best_cost = register_move_cost (outer, (enum reg_class) rclass,
721 : : dest_class);
722 : : }
723 : : }
724 : :
725 : 0 : gcc_assert (best_size != 0);
726 : :
727 : : #ifdef LIMIT_RELOAD_CLASS
728 : : best_class = LIMIT_RELOAD_CLASS (mode, best_class);
729 : : #endif
730 : 0 : return best_class;
731 : : }
732 : :
733 : : /* Return the number of a previously made reload that can be combined with
734 : : a new one, or n_reloads if none of the existing reloads can be used.
735 : : OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
736 : : push_reload, they determine the kind of the new reload that we try to
737 : : combine. P_IN points to the corresponding value of IN, which can be
738 : : modified by this function.
739 : : DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
740 : :
741 : : static int
742 : 0 : find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
743 : : enum reload_type type, int opnum, int dont_share)
744 : : {
745 : 0 : rtx in = *p_in;
746 : 0 : int i;
747 : : /* We can't merge two reloads if the output of either one is
748 : : earlyclobbered. */
749 : :
750 : 0 : if (earlyclobber_operand_p (out))
751 : 0 : return n_reloads;
752 : :
753 : : /* We can use an existing reload if the class is right
754 : : and at least one of IN and OUT is a match
755 : : and the other is at worst neutral.
756 : : (A zero compared against anything is neutral.)
757 : :
758 : : For targets with small register classes, don't use existing reloads
759 : : unless they are for the same thing since that can cause us to need
760 : : more reload registers than we otherwise would. */
761 : :
762 : 0 : for (i = 0; i < n_reloads; i++)
763 : 0 : if ((reg_class_subset_p (rclass, rld[i].rclass)
764 : 0 : || reg_class_subset_p (rld[i].rclass, rclass))
765 : : /* If the existing reload has a register, it must fit our class. */
766 : 0 : && (rld[i].reg_rtx == 0
767 : 0 : || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
768 : 0 : true_regnum (rld[i].reg_rtx)))
769 : 0 : && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
770 : 0 : && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
771 : 0 : || (out != 0 && MATCHES (rld[i].out, out)
772 : 0 : && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
773 : 0 : && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
774 : 0 : && (small_register_class_p (rclass)
775 : 0 : || targetm.small_register_classes_for_mode_p (VOIDmode))
776 : 0 : && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
777 : : return i;
778 : :
779 : : /* Reloading a plain reg for input can match a reload to postincrement
780 : : that reg, since the postincrement's value is the right value.
781 : : Likewise, it can match a preincrement reload, since we regard
782 : : the preincrementation as happening before any ref in this insn
783 : : to that register. */
784 : 0 : for (i = 0; i < n_reloads; i++)
785 : 0 : if ((reg_class_subset_p (rclass, rld[i].rclass)
786 : 0 : || reg_class_subset_p (rld[i].rclass, rclass))
787 : : /* If the existing reload has a register, it must fit our
788 : : class. */
789 : 0 : && (rld[i].reg_rtx == 0
790 : 0 : || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
791 : 0 : true_regnum (rld[i].reg_rtx)))
792 : 0 : && out == 0 && rld[i].out == 0 && rld[i].in != 0
793 : 0 : && ((REG_P (in)
794 : 0 : && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
795 : 0 : && MATCHES (XEXP (rld[i].in, 0), in))
796 : 0 : || (REG_P (rld[i].in)
797 : 0 : && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
798 : 0 : && MATCHES (XEXP (in, 0), rld[i].in)))
799 : 0 : && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
800 : 0 : && (small_register_class_p (rclass)
801 : 0 : || targetm.small_register_classes_for_mode_p (VOIDmode))
802 : 0 : && MERGABLE_RELOADS (type, rld[i].when_needed,
803 : : opnum, rld[i].opnum))
804 : : {
805 : : /* Make sure reload_in ultimately has the increment,
806 : : not the plain register. */
807 : 0 : if (REG_P (in))
808 : 0 : *p_in = rld[i].in;
809 : 0 : return i;
810 : : }
811 : : return n_reloads;
812 : : }
813 : :
814 : : /* Return true if:
815 : :
816 : : (a) (subreg:OUTER_MODE REG ...) represents a word or subword subreg
817 : : of a multiword value; and
818 : :
819 : : (b) the number of *words* in REG does not match the number of *registers*
820 : : in REG. */
821 : :
822 : : static bool
823 : 0 : complex_word_subreg_p (machine_mode outer_mode, rtx reg)
824 : : {
825 : 0 : machine_mode inner_mode = GET_MODE (reg);
826 : 0 : poly_uint64 reg_words = REG_NREGS (reg) * UNITS_PER_WORD;
827 : 0 : return (known_le (GET_MODE_SIZE (outer_mode), UNITS_PER_WORD)
828 : 0 : && maybe_gt (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
829 : 0 : && !known_equal_after_align_up (GET_MODE_SIZE (inner_mode),
830 : 0 : reg_words, UNITS_PER_WORD));
831 : : }
832 : :
833 : : /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
834 : : expression. MODE is the mode that X will be used in. OUTPUT is true if
835 : : the function is invoked for the output part of an enclosing reload. */
836 : :
837 : : static bool
838 : 0 : reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
839 : : {
840 : 0 : rtx inner;
841 : :
842 : : /* Only SUBREGs are problematical. */
843 : 0 : if (GET_CODE (x) != SUBREG)
844 : : return false;
845 : :
846 : 0 : inner = SUBREG_REG (x);
847 : :
848 : : /* If INNER is a constant or PLUS, then INNER will need reloading. */
849 : 0 : if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
850 : : return true;
851 : :
852 : : /* If INNER is not a hard register, then INNER will not need reloading. */
853 : 0 : if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
854 : : return false;
855 : :
856 : : /* If INNER is not ok for MODE, then INNER will need reloading. */
857 : 0 : if (!targetm.hard_regno_mode_ok (subreg_regno (x), mode))
858 : : return true;
859 : :
860 : : /* If this is for an output, and the outer part is a word or smaller,
861 : : INNER is larger than a word and the number of registers in INNER is
862 : : not the same as the number of words in INNER, then INNER will need
863 : : reloading (with an in-out reload). */
864 : 0 : return output && complex_word_subreg_p (mode, inner);
865 : : }
866 : :
867 : : /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
868 : : requiring an extra reload register. The caller has already found that
869 : : IN contains some reference to REGNO, so check that we can produce the
870 : : new value in a single step. E.g. if we have
871 : : (set (reg r13) (plus (reg r13) (const int 1))), and there is an
872 : : instruction that adds one to a register, this should succeed.
873 : : However, if we have something like
874 : : (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
875 : : needs to be loaded into a register first, we need a separate reload
876 : : register.
877 : : Such PLUS reloads are generated by find_reload_address_part.
878 : : The out-of-range PLUS expressions are usually introduced in the instruction
879 : : patterns by register elimination and substituting pseudos without a home
880 : : by their function-invariant equivalences. */
881 : : static int
882 : 0 : can_reload_into (rtx in, int regno, machine_mode mode)
883 : : {
884 : 0 : rtx dst;
885 : 0 : rtx_insn *test_insn;
886 : 0 : int r = 0;
887 : 0 : struct recog_data_d save_recog_data;
888 : :
889 : : /* For matching constraints, we often get notional input reloads where
890 : : we want to use the original register as the reload register. I.e.
891 : : technically this is a non-optional input-output reload, but IN is
892 : : already a valid register, and has been chosen as the reload register.
893 : : Speed this up, since it trivially works. */
894 : 0 : if (REG_P (in))
895 : : return 1;
896 : :
897 : : /* To test MEMs properly, we'd have to take into account all the reloads
898 : : that are already scheduled, which can become quite complicated.
899 : : And since we've already handled address reloads for this MEM, it
900 : : should always succeed anyway. */
901 : 0 : if (MEM_P (in))
902 : : return 1;
903 : :
904 : : /* If we can make a simple SET insn that does the job, everything should
905 : : be fine. */
906 : 0 : dst = gen_rtx_REG (mode, regno);
907 : 0 : test_insn = make_insn_raw (gen_rtx_SET (dst, in));
908 : 0 : save_recog_data = recog_data;
909 : 0 : if (recog_memoized (test_insn) >= 0)
910 : : {
911 : 0 : extract_insn (test_insn);
912 : 0 : r = constrain_operands (1, get_enabled_alternatives (test_insn));
913 : : }
914 : 0 : recog_data = save_recog_data;
915 : 0 : return r;
916 : : }
917 : :
918 : : /* Record one reload that needs to be performed.
919 : : IN is an rtx saying where the data are to be found before this instruction.
920 : : OUT says where they must be stored after the instruction.
921 : : (IN is zero for data not read, and OUT is zero for data not written.)
922 : : INLOC and OUTLOC point to the places in the instructions where
923 : : IN and OUT were found.
924 : : If IN and OUT are both nonzero, it means the same register must be used
925 : : to reload both IN and OUT.
926 : :
927 : : RCLASS is a register class required for the reloaded data.
928 : : INMODE is the machine mode that the instruction requires
929 : : for the reg that replaces IN and OUTMODE is likewise for OUT.
930 : :
931 : : If IN is zero, then OUT's location and mode should be passed as
932 : : INLOC and INMODE.
933 : :
934 : : STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
935 : :
936 : : OPTIONAL nonzero means this reload does not need to be performed:
937 : : it can be discarded if that is more convenient.
938 : :
939 : : OPNUM and TYPE say what the purpose of this reload is.
940 : :
941 : : The return value is the reload-number for this reload.
942 : :
943 : : If both IN and OUT are nonzero, in some rare cases we might
944 : : want to make two separate reloads. (Actually we never do this now.)
945 : : Therefore, the reload-number for OUT is stored in
946 : : output_reloadnum when we return; the return value applies to IN.
947 : : Usually (presently always), when IN and OUT are nonzero,
948 : : the two reload-numbers are equal, but the caller should be careful to
949 : : distinguish them. */
950 : :
951 : : int
952 : 0 : push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
953 : : enum reg_class rclass, machine_mode inmode,
954 : : machine_mode outmode, int strict_low, int optional,
955 : : int opnum, enum reload_type type)
956 : : {
957 : 0 : int i;
958 : 0 : int dont_share = 0;
959 : 0 : int dont_remove_subreg = 0;
960 : : #ifdef LIMIT_RELOAD_CLASS
961 : : rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
962 : : #endif
963 : 0 : int secondary_in_reload = -1, secondary_out_reload = -1;
964 : 0 : enum insn_code secondary_in_icode = CODE_FOR_nothing;
965 : 0 : enum insn_code secondary_out_icode = CODE_FOR_nothing;
966 : 0 : enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
967 : 0 : subreg_in_class = NO_REGS;
968 : :
969 : : /* INMODE and/or OUTMODE could be VOIDmode if no mode
970 : : has been specified for the operand. In that case,
971 : : use the operand's mode as the mode to reload. */
972 : 0 : if (inmode == VOIDmode && in != 0)
973 : 0 : inmode = GET_MODE (in);
974 : 0 : if (outmode == VOIDmode && out != 0)
975 : 0 : outmode = GET_MODE (out);
976 : :
977 : : /* If find_reloads and friends until now missed to replace a pseudo
978 : : with a constant of reg_equiv_constant something went wrong
979 : : beforehand.
980 : : Note that it can't simply be done here if we missed it earlier
981 : : since the constant might need to be pushed into the literal pool
982 : : and the resulting memref would probably need further
983 : : reloading. */
984 : 0 : if (in != 0 && REG_P (in))
985 : : {
986 : 0 : int regno = REGNO (in);
987 : :
988 : 0 : gcc_assert (regno < FIRST_PSEUDO_REGISTER
989 : : || reg_renumber[regno] >= 0
990 : : || reg_equiv_constant (regno) == NULL_RTX);
991 : : }
992 : :
993 : : /* reg_equiv_constant only contains constants which are obviously
994 : : not appropriate as destination. So if we would need to replace
995 : : the destination pseudo with a constant we are in real
996 : : trouble. */
997 : 0 : if (out != 0 && REG_P (out))
998 : : {
999 : 0 : int regno = REGNO (out);
1000 : :
1001 : 0 : gcc_assert (regno < FIRST_PSEUDO_REGISTER
1002 : : || reg_renumber[regno] >= 0
1003 : : || reg_equiv_constant (regno) == NULL_RTX);
1004 : : }
1005 : :
1006 : : /* If we have a read-write operand with an address side-effect,
1007 : : change either IN or OUT so the side-effect happens only once. */
1008 : 0 : if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1009 : 0 : switch (GET_CODE (XEXP (in, 0)))
1010 : : {
1011 : 0 : case POST_INC: case POST_DEC: case POST_MODIFY:
1012 : 0 : in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1013 : 0 : break;
1014 : :
1015 : 0 : case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1016 : 0 : out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1017 : 0 : break;
1018 : :
1019 : : default:
1020 : : break;
1021 : : }
1022 : :
1023 : : /* If we are reloading a (SUBREG constant ...), really reload just the
1024 : : inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1025 : : If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1026 : : a pseudo and hence will become a MEM) with M1 wider than M2 and the
1027 : : register is a pseudo, also reload the inside expression.
1028 : : For machines that extend byte loads, do this for any SUBREG of a pseudo
1029 : : where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1030 : : M2 is an integral mode that gets extended when loaded.
1031 : : Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1032 : : where either M1 is not valid for R or M2 is wider than a word but we
1033 : : only need one register to store an M2-sized quantity in R.
1034 : : (However, if OUT is nonzero, we need to reload the reg *and*
1035 : : the subreg, so do nothing here, and let following statement handle it.)
1036 : :
1037 : : Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1038 : : we can't handle it here because CONST_INT does not indicate a mode.
1039 : :
1040 : : Similarly, we must reload the inside expression if we have a
1041 : : STRICT_LOW_PART (presumably, in == out in this case).
1042 : :
1043 : : Also reload the inner expression if it does not require a secondary
1044 : : reload but the SUBREG does.
1045 : :
1046 : : Also reload the inner expression if it is a register that is in
1047 : : the class whose registers cannot be referenced in a different size
1048 : : and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1049 : : cannot reload just the inside since we might end up with the wrong
1050 : : register class. But if it is inside a STRICT_LOW_PART, we have
1051 : : no choice, so we hope we do get the right register class there.
1052 : :
1053 : : Finally, reload the inner expression if it is a pseudo that will
1054 : : become a MEM and the MEM has a mode-dependent address, as in that
1055 : : case we obviously cannot change the mode of the MEM to that of the
1056 : : containing SUBREG as that would change the interpretation of the
1057 : : address. */
1058 : :
1059 : 0 : scalar_int_mode inner_mode;
1060 : 0 : if (in != 0 && GET_CODE (in) == SUBREG
1061 : 0 : && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (in)),
1062 : : inmode, rclass)
1063 : 0 : && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (in))]
1064 : 0 : && (strict_low
1065 : 0 : || (subreg_lowpart_p (in)
1066 : 0 : && (CONSTANT_P (SUBREG_REG (in))
1067 : 0 : || GET_CODE (SUBREG_REG (in)) == PLUS
1068 : 0 : || (((REG_P (SUBREG_REG (in))
1069 : 0 : && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1070 : 0 : || MEM_P (SUBREG_REG (in)))
1071 : 0 : && (paradoxical_subreg_p (inmode,
1072 : 0 : GET_MODE (SUBREG_REG (in)))
1073 : 0 : || (known_le (GET_MODE_SIZE (inmode), UNITS_PER_WORD)
1074 : 0 : && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG
1075 : : (in)),
1076 : : &inner_mode)
1077 : 0 : && GET_MODE_SIZE (inner_mode) <= UNITS_PER_WORD
1078 : 0 : && paradoxical_subreg_p (inmode, inner_mode)
1079 : : && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)
1080 : : || (WORD_REGISTER_OPERATIONS
1081 : : && partial_subreg_p (inmode,
1082 : : GET_MODE (SUBREG_REG (in)))
1083 : : && (known_equal_after_align_down
1084 : : (GET_MODE_SIZE (inmode) - 1,
1085 : : GET_MODE_SIZE (GET_MODE (SUBREG_REG
1086 : : (in))) - 1,
1087 : : UNITS_PER_WORD)))))
1088 : 0 : || (REG_P (SUBREG_REG (in))
1089 : 0 : && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1090 : : /* The case where out is nonzero
1091 : : is handled differently in the following statement. */
1092 : 0 : && (out == 0 || subreg_lowpart_p (in))
1093 : 0 : && (complex_word_subreg_p (inmode, SUBREG_REG (in))
1094 : 0 : || !targetm.hard_regno_mode_ok (subreg_regno (in),
1095 : : inmode)))
1096 : 0 : || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1097 : 0 : && (secondary_reload_class (1, rclass,
1098 : 0 : GET_MODE (SUBREG_REG (in)),
1099 : : SUBREG_REG (in))
1100 : : == NO_REGS))
1101 : 0 : || (REG_P (SUBREG_REG (in))
1102 : 0 : && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1103 : 0 : && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (in)),
1104 : : GET_MODE (SUBREG_REG (in)),
1105 : : inmode))))
1106 : 0 : || (REG_P (SUBREG_REG (in))
1107 : 0 : && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER
1108 : 0 : && reg_equiv_mem (REGNO (SUBREG_REG (in)))
1109 : 0 : && (mode_dependent_address_p
1110 : 0 : (XEXP (reg_equiv_mem (REGNO (SUBREG_REG (in))), 0),
1111 : 0 : MEM_ADDR_SPACE (reg_equiv_mem (REGNO (SUBREG_REG (in)))))))))
1112 : : {
1113 : : #ifdef LIMIT_RELOAD_CLASS
1114 : : in_subreg_loc = inloc;
1115 : : #endif
1116 : 0 : inloc = &SUBREG_REG (in);
1117 : 0 : in = *inloc;
1118 : :
1119 : 0 : if (!WORD_REGISTER_OPERATIONS
1120 : : && LOAD_EXTEND_OP (GET_MODE (in)) == UNKNOWN
1121 : 0 : && MEM_P (in))
1122 : : /* This is supposed to happen only for paradoxical subregs made by
1123 : : combine.cc. (SUBREG (MEM)) isn't supposed to occur other ways. */
1124 : 0 : gcc_assert (known_le (GET_MODE_SIZE (GET_MODE (in)),
1125 : : GET_MODE_SIZE (inmode)));
1126 : :
1127 : 0 : inmode = GET_MODE (in);
1128 : : }
1129 : :
1130 : : /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1131 : : where M1 is not valid for R if it was not handled by the code above.
1132 : :
1133 : : Similar issue for (SUBREG constant ...) if it was not handled by the
1134 : : code above. This can happen if SUBREG_BYTE != 0.
1135 : :
1136 : : However, we must reload the inner reg *as well as* the subreg in
1137 : : that case. */
1138 : :
1139 : 0 : if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1140 : : {
1141 : 0 : if (REG_P (SUBREG_REG (in)))
1142 : 0 : subreg_in_class
1143 : 0 : = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1144 : 0 : subreg_regno_offset (REGNO (SUBREG_REG (in)),
1145 : 0 : GET_MODE (SUBREG_REG (in)),
1146 : 0 : SUBREG_BYTE (in),
1147 : 0 : GET_MODE (in)),
1148 : 0 : REGNO (SUBREG_REG (in)));
1149 : 0 : else if (CONSTANT_P (SUBREG_REG (in))
1150 : 0 : || GET_CODE (SUBREG_REG (in)) == PLUS)
1151 : 0 : subreg_in_class = find_valid_class_1 (inmode,
1152 : 0 : GET_MODE (SUBREG_REG (in)),
1153 : : rclass);
1154 : :
1155 : : /* This relies on the fact that emit_reload_insns outputs the
1156 : : instructions for input reloads of type RELOAD_OTHER in the same
1157 : : order as the reloads. Thus if the outer reload is also of type
1158 : : RELOAD_OTHER, we are guaranteed that this inner reload will be
1159 : : output before the outer reload. */
1160 : 0 : push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1161 : : subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1162 : 0 : dont_remove_subreg = 1;
1163 : : }
1164 : :
1165 : : /* Similarly for paradoxical and problematical SUBREGs on the output.
1166 : : Note that there is no reason we need worry about the previous value
1167 : : of SUBREG_REG (out); even if wider than out, storing in a subreg is
1168 : : entitled to clobber it all (except in the case of a word mode subreg
1169 : : or of a STRICT_LOW_PART, in that latter case the constraint should
1170 : : label it input-output.) */
1171 : 0 : if (out != 0 && GET_CODE (out) == SUBREG
1172 : 0 : && (subreg_lowpart_p (out) || strict_low)
1173 : 0 : && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (out)),
1174 : : outmode, rclass)
1175 : 0 : && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (out))]
1176 : 0 : && (CONSTANT_P (SUBREG_REG (out))
1177 : 0 : || strict_low
1178 : 0 : || (((REG_P (SUBREG_REG (out))
1179 : 0 : && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1180 : 0 : || MEM_P (SUBREG_REG (out)))
1181 : 0 : && (paradoxical_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1182 : : || (WORD_REGISTER_OPERATIONS
1183 : : && partial_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1184 : : && (known_equal_after_align_down
1185 : : (GET_MODE_SIZE (outmode) - 1,
1186 : : GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1,
1187 : : UNITS_PER_WORD)))))
1188 : 0 : || (REG_P (SUBREG_REG (out))
1189 : 0 : && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1190 : : /* The case of a word mode subreg
1191 : : is handled differently in the following statement. */
1192 : 0 : && ! (known_le (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1193 : 0 : && maybe_gt (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))),
1194 : : UNITS_PER_WORD))
1195 : 0 : && !targetm.hard_regno_mode_ok (subreg_regno (out), outmode))
1196 : 0 : || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1197 : 0 : && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1198 : : SUBREG_REG (out))
1199 : : == NO_REGS))
1200 : 0 : || (REG_P (SUBREG_REG (out))
1201 : 0 : && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1202 : 0 : && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1203 : : GET_MODE (SUBREG_REG (out)),
1204 : : outmode))))
1205 : : {
1206 : : #ifdef LIMIT_RELOAD_CLASS
1207 : : out_subreg_loc = outloc;
1208 : : #endif
1209 : 0 : outloc = &SUBREG_REG (out);
1210 : 0 : out = *outloc;
1211 : 0 : gcc_assert (WORD_REGISTER_OPERATIONS || !MEM_P (out)
1212 : : || known_le (GET_MODE_SIZE (GET_MODE (out)),
1213 : : GET_MODE_SIZE (outmode)));
1214 : 0 : outmode = GET_MODE (out);
1215 : : }
1216 : :
1217 : : /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1218 : : where either M1 is not valid for R or M2 is wider than a word but we
1219 : : only need one register to store an M2-sized quantity in R.
1220 : :
1221 : : However, we must reload the inner reg *as well as* the subreg in
1222 : : that case and the inner reg is an in-out reload. */
1223 : :
1224 : 0 : if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1225 : : {
1226 : 0 : enum reg_class in_out_class
1227 : 0 : = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1228 : 0 : subreg_regno_offset (REGNO (SUBREG_REG (out)),
1229 : 0 : GET_MODE (SUBREG_REG (out)),
1230 : 0 : SUBREG_BYTE (out),
1231 : 0 : GET_MODE (out)),
1232 : 0 : REGNO (SUBREG_REG (out)));
1233 : :
1234 : : /* This relies on the fact that emit_reload_insns outputs the
1235 : : instructions for output reloads of type RELOAD_OTHER in reverse
1236 : : order of the reloads. Thus if the outer reload is also of type
1237 : : RELOAD_OTHER, we are guaranteed that this inner reload will be
1238 : : output after the outer reload. */
1239 : 0 : push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1240 : : &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1241 : : 0, 0, opnum, RELOAD_OTHER);
1242 : 0 : dont_remove_subreg = 1;
1243 : : }
1244 : :
1245 : : /* If IN appears in OUT, we can't share any input-only reload for IN. */
1246 : 0 : if (in != 0 && out != 0 && MEM_P (out)
1247 : 0 : && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1248 : 0 : && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1249 : : dont_share = 1;
1250 : :
1251 : : /* If IN is a SUBREG of a hard register, make a new REG. This
1252 : : simplifies some of the cases below. */
1253 : :
1254 : 0 : if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1255 : 0 : && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1256 : 0 : && ! dont_remove_subreg)
1257 : 0 : in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1258 : :
1259 : : /* Similarly for OUT. */
1260 : 0 : if (out != 0 && GET_CODE (out) == SUBREG
1261 : 0 : && REG_P (SUBREG_REG (out))
1262 : 0 : && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1263 : 0 : && ! dont_remove_subreg)
1264 : 0 : out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1265 : :
1266 : : /* Narrow down the class of register wanted if that is
1267 : : desirable on this machine for efficiency. */
1268 : 0 : {
1269 : 0 : reg_class_t preferred_class = rclass;
1270 : :
1271 : 0 : if (in != 0)
1272 : 0 : preferred_class = targetm.preferred_reload_class (in, rclass);
1273 : :
1274 : : /* Output reloads may need analogous treatment, different in detail. */
1275 : 0 : if (out != 0)
1276 : 0 : preferred_class
1277 : 0 : = targetm.preferred_output_reload_class (out, preferred_class);
1278 : :
1279 : : /* Discard what the target said if we cannot do it. */
1280 : 0 : if (preferred_class != NO_REGS
1281 : 0 : || (optional && type == RELOAD_FOR_OUTPUT))
1282 : 0 : rclass = (enum reg_class) preferred_class;
1283 : : }
1284 : :
1285 : : /* Make sure we use a class that can handle the actual pseudo
1286 : : inside any subreg. For example, on the 386, QImode regs
1287 : : can appear within SImode subregs. Although GENERAL_REGS
1288 : : can handle SImode, QImode needs a smaller class. */
1289 : : #ifdef LIMIT_RELOAD_CLASS
1290 : : if (in_subreg_loc)
1291 : : rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1292 : : else if (in != 0 && GET_CODE (in) == SUBREG)
1293 : : rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1294 : :
1295 : : if (out_subreg_loc)
1296 : : rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1297 : : if (out != 0 && GET_CODE (out) == SUBREG)
1298 : : rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1299 : : #endif
1300 : :
1301 : : /* Verify that this class is at least possible for the mode that
1302 : : is specified. */
1303 : 0 : if (this_insn_is_asm)
1304 : : {
1305 : 0 : machine_mode mode;
1306 : 0 : if (paradoxical_subreg_p (inmode, outmode))
1307 : : mode = inmode;
1308 : : else
1309 : 0 : mode = outmode;
1310 : 0 : if (mode == VOIDmode)
1311 : : {
1312 : 0 : error_for_asm (this_insn, "cannot reload integer constant "
1313 : : "operand in %<asm%>");
1314 : 0 : mode = word_mode;
1315 : 0 : if (in != 0)
1316 : 0 : inmode = word_mode;
1317 : 0 : if (out != 0)
1318 : 0 : outmode = word_mode;
1319 : : }
1320 : 0 : for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1321 : 0 : if (targetm.hard_regno_mode_ok (i, mode)
1322 : 0 : && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1323 : : break;
1324 : 0 : if (i == FIRST_PSEUDO_REGISTER)
1325 : : {
1326 : 0 : error_for_asm (this_insn, "impossible register constraint "
1327 : : "in %<asm%>");
1328 : : /* Avoid further trouble with this insn. */
1329 : 0 : PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1330 : : /* We used to continue here setting class to ALL_REGS, but it triggers
1331 : : sanity check on i386 for:
1332 : : void foo(long double d)
1333 : : {
1334 : : asm("" :: "a" (d));
1335 : : }
1336 : : Returning zero here ought to be safe as we take care in
1337 : : find_reloads to not process the reloads when instruction was
1338 : : replaced by USE. */
1339 : :
1340 : 0 : return 0;
1341 : : }
1342 : : }
1343 : :
1344 : : /* Optional output reloads are always OK even if we have no register class,
1345 : : since the function of these reloads is only to have spill_reg_store etc.
1346 : : set, so that the storing insn can be deleted later. */
1347 : 0 : gcc_assert (rclass != NO_REGS
1348 : : || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1349 : :
1350 : 0 : i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1351 : :
1352 : 0 : if (i == n_reloads)
1353 : : {
1354 : : /* See if we need a secondary reload register to move between CLASS
1355 : : and IN or CLASS and OUT. Get the icode and push any required reloads
1356 : : needed for each of them if so. */
1357 : :
1358 : 0 : if (in != 0)
1359 : 0 : secondary_in_reload
1360 : 0 : = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1361 : : &secondary_in_icode, NULL);
1362 : 0 : if (out != 0 && GET_CODE (out) != SCRATCH)
1363 : 0 : secondary_out_reload
1364 : 0 : = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1365 : : type, &secondary_out_icode, NULL);
1366 : :
1367 : : /* We found no existing reload suitable for re-use.
1368 : : So add an additional reload. */
1369 : :
1370 : 0 : if (subreg_in_class == NO_REGS
1371 : 0 : && in != 0
1372 : 0 : && (REG_P (in)
1373 : 0 : || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1374 : 0 : && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1375 : 0 : subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1376 : : /* If a memory location is needed for the copy, make one. */
1377 : 0 : if (subreg_in_class != NO_REGS
1378 : 0 : && targetm.secondary_memory_needed (inmode, subreg_in_class, rclass))
1379 : 0 : get_secondary_mem (in, inmode, opnum, type);
1380 : :
1381 : 0 : i = n_reloads;
1382 : 0 : rld[i].in = in;
1383 : 0 : rld[i].out = out;
1384 : 0 : rld[i].rclass = rclass;
1385 : 0 : rld[i].inmode = inmode;
1386 : 0 : rld[i].outmode = outmode;
1387 : 0 : rld[i].reg_rtx = 0;
1388 : 0 : rld[i].optional = optional;
1389 : 0 : rld[i].inc = 0;
1390 : 0 : rld[i].nocombine = 0;
1391 : 0 : rld[i].in_reg = inloc ? *inloc : 0;
1392 : 0 : rld[i].out_reg = outloc ? *outloc : 0;
1393 : 0 : rld[i].opnum = opnum;
1394 : 0 : rld[i].when_needed = type;
1395 : 0 : rld[i].secondary_in_reload = secondary_in_reload;
1396 : 0 : rld[i].secondary_out_reload = secondary_out_reload;
1397 : 0 : rld[i].secondary_in_icode = secondary_in_icode;
1398 : 0 : rld[i].secondary_out_icode = secondary_out_icode;
1399 : 0 : rld[i].secondary_p = 0;
1400 : :
1401 : 0 : n_reloads++;
1402 : :
1403 : 0 : if (out != 0
1404 : 0 : && (REG_P (out)
1405 : 0 : || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1406 : 0 : && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1407 : 0 : && (targetm.secondary_memory_needed
1408 : 0 : (outmode, rclass, REGNO_REG_CLASS (reg_or_subregno (out)))))
1409 : 0 : get_secondary_mem (out, outmode, opnum, type);
1410 : : }
1411 : : else
1412 : : {
1413 : : /* We are reusing an existing reload,
1414 : : but we may have additional information for it.
1415 : : For example, we may now have both IN and OUT
1416 : : while the old one may have just one of them. */
1417 : :
1418 : : /* The modes can be different. If they are, we want to reload in
1419 : : the larger mode, so that the value is valid for both modes. */
1420 : 0 : if (inmode != VOIDmode
1421 : 0 : && partial_subreg_p (rld[i].inmode, inmode))
1422 : 0 : rld[i].inmode = inmode;
1423 : 0 : if (outmode != VOIDmode
1424 : 0 : && partial_subreg_p (rld[i].outmode, outmode))
1425 : 0 : rld[i].outmode = outmode;
1426 : 0 : if (in != 0)
1427 : : {
1428 : 0 : rtx in_reg = inloc ? *inloc : 0;
1429 : : /* If we merge reloads for two distinct rtl expressions that
1430 : : are identical in content, there might be duplicate address
1431 : : reloads. Remove the extra set now, so that if we later find
1432 : : that we can inherit this reload, we can get rid of the
1433 : : address reloads altogether.
1434 : :
1435 : : Do not do this if both reloads are optional since the result
1436 : : would be an optional reload which could potentially leave
1437 : : unresolved address replacements.
1438 : :
1439 : : It is not sufficient to call transfer_replacements since
1440 : : choose_reload_regs will remove the replacements for address
1441 : : reloads of inherited reloads which results in the same
1442 : : problem. */
1443 : 0 : if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1444 : 0 : && ! (rld[i].optional && optional))
1445 : : {
1446 : : /* We must keep the address reload with the lower operand
1447 : : number alive. */
1448 : 0 : if (opnum > rld[i].opnum)
1449 : : {
1450 : 0 : remove_address_replacements (in);
1451 : 0 : in = rld[i].in;
1452 : 0 : in_reg = rld[i].in_reg;
1453 : : }
1454 : : else
1455 : 0 : remove_address_replacements (rld[i].in);
1456 : : }
1457 : : /* When emitting reloads we don't necessarily look at the in-
1458 : : and outmode, but also directly at the operands (in and out).
1459 : : So we can't simply overwrite them with whatever we have found
1460 : : for this (to-be-merged) reload, we have to "merge" that too.
1461 : : Reusing another reload already verified that we deal with the
1462 : : same operands, just possibly in different modes. So we
1463 : : overwrite the operands only when the new mode is larger.
1464 : : See also PR33613. */
1465 : 0 : if (!rld[i].in
1466 : 0 : || partial_subreg_p (GET_MODE (rld[i].in), GET_MODE (in)))
1467 : 0 : rld[i].in = in;
1468 : 0 : if (!rld[i].in_reg
1469 : 0 : || (in_reg
1470 : 0 : && partial_subreg_p (GET_MODE (rld[i].in_reg),
1471 : 0 : GET_MODE (in_reg))))
1472 : 0 : rld[i].in_reg = in_reg;
1473 : : }
1474 : 0 : if (out != 0)
1475 : : {
1476 : 0 : if (!rld[i].out
1477 : 0 : || (out
1478 : 0 : && partial_subreg_p (GET_MODE (rld[i].out),
1479 : 0 : GET_MODE (out))))
1480 : 0 : rld[i].out = out;
1481 : 0 : if (outloc
1482 : 0 : && (!rld[i].out_reg
1483 : 0 : || partial_subreg_p (GET_MODE (rld[i].out_reg),
1484 : 0 : GET_MODE (*outloc))))
1485 : 0 : rld[i].out_reg = *outloc;
1486 : : }
1487 : 0 : if (reg_class_subset_p (rclass, rld[i].rclass))
1488 : 0 : rld[i].rclass = rclass;
1489 : 0 : rld[i].optional &= optional;
1490 : 0 : if (MERGE_TO_OTHER (type, rld[i].when_needed,
1491 : : opnum, rld[i].opnum))
1492 : 0 : rld[i].when_needed = RELOAD_OTHER;
1493 : 0 : rld[i].opnum = MIN (rld[i].opnum, opnum);
1494 : : }
1495 : :
1496 : : /* If the ostensible rtx being reloaded differs from the rtx found
1497 : : in the location to substitute, this reload is not safe to combine
1498 : : because we cannot reliably tell whether it appears in the insn. */
1499 : :
1500 : 0 : if (in != 0 && in != *inloc)
1501 : 0 : rld[i].nocombine = 1;
1502 : :
1503 : : /* If we will replace IN and OUT with the reload-reg,
1504 : : record where they are located so that substitution need
1505 : : not do a tree walk. */
1506 : :
1507 : 0 : if (replace_reloads)
1508 : : {
1509 : 0 : if (inloc != 0)
1510 : : {
1511 : 0 : struct replacement *r = &replacements[n_replacements++];
1512 : 0 : r->what = i;
1513 : 0 : r->where = inloc;
1514 : 0 : r->mode = inmode;
1515 : : }
1516 : 0 : if (outloc != 0 && outloc != inloc)
1517 : : {
1518 : 0 : struct replacement *r = &replacements[n_replacements++];
1519 : 0 : r->what = i;
1520 : 0 : r->where = outloc;
1521 : 0 : r->mode = outmode;
1522 : : }
1523 : : }
1524 : :
1525 : : /* If this reload is just being introduced and it has both
1526 : : an incoming quantity and an outgoing quantity that are
1527 : : supposed to be made to match, see if either one of the two
1528 : : can serve as the place to reload into.
1529 : :
1530 : : If one of them is acceptable, set rld[i].reg_rtx
1531 : : to that one. */
1532 : :
1533 : 0 : if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1534 : : {
1535 : 0 : rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1536 : : inmode, outmode,
1537 : 0 : rld[i].rclass, i,
1538 : : earlyclobber_operand_p (out));
1539 : :
1540 : : /* If the outgoing register already contains the same value
1541 : : as the incoming one, we can dispense with loading it.
1542 : : The easiest way to tell the caller that is to give a phony
1543 : : value for the incoming operand (same as outgoing one). */
1544 : 0 : if (rld[i].reg_rtx == out
1545 : 0 : && (REG_P (in) || CONSTANT_P (in))
1546 : 0 : && find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1547 : : static_reload_reg_p, i, inmode) != 0)
1548 : 0 : rld[i].in = out;
1549 : : }
1550 : :
1551 : : /* If this is an input reload and the operand contains a register that
1552 : : dies in this insn and is used nowhere else, see if it is the right class
1553 : : to be used for this reload. Use it if so. (This occurs most commonly
1554 : : in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1555 : : this if it is also an output reload that mentions the register unless
1556 : : the output is a SUBREG that clobbers an entire register.
1557 : :
1558 : : Note that the operand might be one of the spill regs, if it is a
1559 : : pseudo reg and we are in a block where spilling has not taken place.
1560 : : But if there is no spilling in this block, that is OK.
1561 : : An explicitly used hard reg cannot be a spill reg. */
1562 : :
1563 : 0 : if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1564 : : {
1565 : 0 : rtx note;
1566 : 0 : int regno;
1567 : 0 : machine_mode rel_mode = inmode;
1568 : :
1569 : 0 : if (out && partial_subreg_p (rel_mode, outmode))
1570 : : rel_mode = outmode;
1571 : :
1572 : 0 : for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1573 : 0 : if (REG_NOTE_KIND (note) == REG_DEAD
1574 : 0 : && REG_P (XEXP (note, 0))
1575 : 0 : && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1576 : 0 : && reg_mentioned_p (XEXP (note, 0), in)
1577 : : /* Check that a former pseudo is valid; see find_dummy_reload. */
1578 : 0 : && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1579 : 0 : || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1580 : 0 : ORIGINAL_REGNO (XEXP (note, 0)))
1581 : 0 : && REG_NREGS (XEXP (note, 0)) == 1))
1582 : 0 : && ! refers_to_regno_for_reload_p (regno,
1583 : : end_hard_regno (rel_mode,
1584 : : regno),
1585 : 0 : PATTERN (this_insn), inloc)
1586 : 0 : && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1587 : : /* If this is also an output reload, IN cannot be used as
1588 : : the reload register if it is set in this insn unless IN
1589 : : is also OUT. */
1590 : 0 : && (out == 0 || in == out
1591 : 0 : || ! hard_reg_set_here_p (regno,
1592 : : end_hard_regno (rel_mode, regno),
1593 : 0 : PATTERN (this_insn)))
1594 : : /* ??? Why is this code so different from the previous?
1595 : : Is there any simple coherent way to describe the two together?
1596 : : What's going on here. */
1597 : 0 : && (in != out
1598 : 0 : || (GET_CODE (in) == SUBREG
1599 : : && (known_equal_after_align_up
1600 : 0 : (GET_MODE_SIZE (GET_MODE (in)),
1601 : 0 : GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))),
1602 : 0 : UNITS_PER_WORD))))
1603 : : /* Make sure the operand fits in the reg that dies. */
1604 : 0 : && known_le (GET_MODE_SIZE (rel_mode),
1605 : : GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1606 : 0 : && targetm.hard_regno_mode_ok (regno, inmode)
1607 : 0 : && targetm.hard_regno_mode_ok (regno, outmode))
1608 : : {
1609 : 0 : unsigned int offs;
1610 : 0 : unsigned int nregs = MAX (hard_regno_nregs (regno, inmode),
1611 : : hard_regno_nregs (regno, outmode));
1612 : :
1613 : 0 : for (offs = 0; offs < nregs; offs++)
1614 : 0 : if (fixed_regs[regno + offs]
1615 : 0 : || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1616 : : regno + offs))
1617 : : break;
1618 : :
1619 : 0 : if (offs == nregs
1620 : 0 : && (! (refers_to_regno_for_reload_p
1621 : 0 : (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1622 : 0 : || can_reload_into (in, regno, inmode)))
1623 : : {
1624 : 0 : rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1625 : 0 : break;
1626 : : }
1627 : : }
1628 : : }
1629 : :
1630 : 0 : if (out)
1631 : 0 : output_reloadnum = i;
1632 : :
1633 : : return i;
1634 : : }
1635 : :
1636 : : /* Record an additional place we must replace a value
1637 : : for which we have already recorded a reload.
1638 : : RELOADNUM is the value returned by push_reload
1639 : : when the reload was recorded.
1640 : : This is used in insn patterns that use match_dup. */
1641 : :
1642 : : static void
1643 : 0 : push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1644 : : {
1645 : 0 : if (replace_reloads)
1646 : : {
1647 : 0 : struct replacement *r = &replacements[n_replacements++];
1648 : 0 : r->what = reloadnum;
1649 : 0 : r->where = loc;
1650 : 0 : r->mode = mode;
1651 : : }
1652 : 0 : }
1653 : :
1654 : : /* Duplicate any replacement we have recorded to apply at
1655 : : location ORIG_LOC to also be performed at DUP_LOC.
1656 : : This is used in insn patterns that use match_dup. */
1657 : :
1658 : : static void
1659 : 0 : dup_replacements (rtx *dup_loc, rtx *orig_loc)
1660 : : {
1661 : 0 : int i, n = n_replacements;
1662 : :
1663 : 0 : for (i = 0; i < n; i++)
1664 : : {
1665 : 0 : struct replacement *r = &replacements[i];
1666 : 0 : if (r->where == orig_loc)
1667 : 0 : push_replacement (dup_loc, r->what, r->mode);
1668 : : }
1669 : 0 : }
1670 : :
1671 : : /* Transfer all replacements that used to be in reload FROM to be in
1672 : : reload TO. */
1673 : :
1674 : : void
1675 : 0 : transfer_replacements (int to, int from)
1676 : : {
1677 : 0 : int i;
1678 : :
1679 : 0 : for (i = 0; i < n_replacements; i++)
1680 : 0 : if (replacements[i].what == from)
1681 : 0 : replacements[i].what = to;
1682 : 0 : }
1683 : :
1684 : : /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1685 : : or a subpart of it. If we have any replacements registered for IN_RTX,
1686 : : cancel the reloads that were supposed to load them.
1687 : : Return nonzero if we canceled any reloads. */
1688 : : int
1689 : 0 : remove_address_replacements (rtx in_rtx)
1690 : : {
1691 : 0 : int i, j;
1692 : 0 : char reload_flags[MAX_RELOADS];
1693 : 0 : int something_changed = 0;
1694 : :
1695 : 0 : memset (reload_flags, 0, sizeof reload_flags);
1696 : 0 : for (i = 0, j = 0; i < n_replacements; i++)
1697 : : {
1698 : 0 : if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1699 : 0 : reload_flags[replacements[i].what] |= 1;
1700 : : else
1701 : : {
1702 : 0 : replacements[j++] = replacements[i];
1703 : 0 : reload_flags[replacements[i].what] |= 2;
1704 : : }
1705 : : }
1706 : : /* Note that the following store must be done before the recursive calls. */
1707 : 0 : n_replacements = j;
1708 : :
1709 : 0 : for (i = n_reloads - 1; i >= 0; i--)
1710 : : {
1711 : 0 : if (reload_flags[i] == 1)
1712 : : {
1713 : 0 : deallocate_reload_reg (i);
1714 : 0 : remove_address_replacements (rld[i].in);
1715 : 0 : rld[i].in = 0;
1716 : 0 : something_changed = 1;
1717 : : }
1718 : : }
1719 : 0 : return something_changed;
1720 : : }
1721 : :
1722 : : /* If there is only one output reload, and it is not for an earlyclobber
1723 : : operand, try to combine it with a (logically unrelated) input reload
1724 : : to reduce the number of reload registers needed.
1725 : :
1726 : : This is safe if the input reload does not appear in
1727 : : the value being output-reloaded, because this implies
1728 : : it is not needed any more once the original insn completes.
1729 : :
1730 : : If that doesn't work, see we can use any of the registers that
1731 : : die in this insn as a reload register. We can if it is of the right
1732 : : class and does not appear in the value being output-reloaded. */
1733 : :
1734 : : static void
1735 : 0 : combine_reloads (void)
1736 : : {
1737 : 0 : int i, regno;
1738 : 0 : int output_reload = -1;
1739 : 0 : int secondary_out = -1;
1740 : 0 : rtx note;
1741 : :
1742 : : /* Find the output reload; return unless there is exactly one
1743 : : and that one is mandatory. */
1744 : :
1745 : 0 : for (i = 0; i < n_reloads; i++)
1746 : 0 : if (rld[i].out != 0)
1747 : : {
1748 : 0 : if (output_reload >= 0)
1749 : : return;
1750 : : output_reload = i;
1751 : : }
1752 : :
1753 : 0 : if (output_reload < 0 || rld[output_reload].optional)
1754 : : return;
1755 : :
1756 : : /* An input-output reload isn't combinable. */
1757 : :
1758 : 0 : if (rld[output_reload].in != 0)
1759 : : return;
1760 : :
1761 : : /* If this reload is for an earlyclobber operand, we can't do anything. */
1762 : 0 : if (earlyclobber_operand_p (rld[output_reload].out))
1763 : : return;
1764 : :
1765 : : /* If there is a reload for part of the address of this operand, we would
1766 : : need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1767 : : its life to the point where doing this combine would not lower the
1768 : : number of spill registers needed. */
1769 : 0 : for (i = 0; i < n_reloads; i++)
1770 : 0 : if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1771 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1772 : 0 : && rld[i].opnum == rld[output_reload].opnum)
1773 : : return;
1774 : :
1775 : : /* Check each input reload; can we combine it? */
1776 : :
1777 : 0 : for (i = 0; i < n_reloads; i++)
1778 : 0 : if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1779 : : /* Life span of this reload must not extend past main insn. */
1780 : 0 : && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1781 : : && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1782 : : && rld[i].when_needed != RELOAD_OTHER
1783 : 0 : && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1784 : 0 : == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1785 : 0 : [(int) rld[output_reload].outmode])
1786 : 0 : && known_eq (rld[i].inc, 0)
1787 : 0 : && rld[i].reg_rtx == 0
1788 : : /* Don't combine two reloads with different secondary
1789 : : memory locations. */
1790 : 0 : && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1791 : 0 : || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1792 : 0 : || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1793 : : secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1794 : 0 : && (targetm.small_register_classes_for_mode_p (VOIDmode)
1795 : 0 : ? (rld[i].rclass == rld[output_reload].rclass)
1796 : 0 : : (reg_class_subset_p (rld[i].rclass,
1797 : 0 : rld[output_reload].rclass)
1798 : 0 : || reg_class_subset_p (rld[output_reload].rclass,
1799 : 0 : rld[i].rclass)))
1800 : 0 : && (MATCHES (rld[i].in, rld[output_reload].out)
1801 : : /* Args reversed because the first arg seems to be
1802 : : the one that we imagine being modified
1803 : : while the second is the one that might be affected. */
1804 : 0 : || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1805 : : rld[i].in)
1806 : : /* However, if the input is a register that appears inside
1807 : : the output, then we also can't share.
1808 : : Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1809 : : If the same reload reg is used for both reg 69 and the
1810 : : result to be stored in memory, then that result
1811 : : will clobber the address of the memory ref. */
1812 : 0 : && ! (REG_P (rld[i].in)
1813 : 0 : && reg_overlap_mentioned_for_reload_p (rld[i].in,
1814 : : rld[output_reload].out))))
1815 : 0 : && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1816 : 0 : rld[i].when_needed != RELOAD_FOR_INPUT)
1817 : 0 : && (reg_class_size[(int) rld[i].rclass]
1818 : 0 : || targetm.small_register_classes_for_mode_p (VOIDmode))
1819 : : /* We will allow making things slightly worse by combining an
1820 : : input and an output, but no worse than that. */
1821 : 0 : && (rld[i].when_needed == RELOAD_FOR_INPUT
1822 : : || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1823 : : {
1824 : 0 : int j;
1825 : :
1826 : : /* We have found a reload to combine with! */
1827 : 0 : rld[i].out = rld[output_reload].out;
1828 : 0 : rld[i].out_reg = rld[output_reload].out_reg;
1829 : 0 : rld[i].outmode = rld[output_reload].outmode;
1830 : : /* Mark the old output reload as inoperative. */
1831 : 0 : rld[output_reload].out = 0;
1832 : : /* The combined reload is needed for the entire insn. */
1833 : 0 : rld[i].when_needed = RELOAD_OTHER;
1834 : : /* If the output reload had a secondary reload, copy it. */
1835 : 0 : if (rld[output_reload].secondary_out_reload != -1)
1836 : : {
1837 : 0 : rld[i].secondary_out_reload
1838 : 0 : = rld[output_reload].secondary_out_reload;
1839 : 0 : rld[i].secondary_out_icode
1840 : 0 : = rld[output_reload].secondary_out_icode;
1841 : : }
1842 : :
1843 : : /* Copy any secondary MEM. */
1844 : 0 : if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1845 : 0 : secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1846 : 0 : = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1847 : : /* If required, minimize the register class. */
1848 : 0 : if (reg_class_subset_p (rld[output_reload].rclass,
1849 : 0 : rld[i].rclass))
1850 : 0 : rld[i].rclass = rld[output_reload].rclass;
1851 : :
1852 : : /* Transfer all replacements from the old reload to the combined. */
1853 : 0 : for (j = 0; j < n_replacements; j++)
1854 : 0 : if (replacements[j].what == output_reload)
1855 : 0 : replacements[j].what = i;
1856 : :
1857 : : return;
1858 : : }
1859 : :
1860 : : /* If this insn has only one operand that is modified or written (assumed
1861 : : to be the first), it must be the one corresponding to this reload. It
1862 : : is safe to use anything that dies in this insn for that output provided
1863 : : that it does not occur in the output (we already know it isn't an
1864 : : earlyclobber. If this is an asm insn, give up. */
1865 : :
1866 : 0 : if (INSN_CODE (this_insn) == -1)
1867 : : return;
1868 : :
1869 : 0 : for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1870 : 0 : if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1871 : 0 : || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1872 : : return;
1873 : :
1874 : : /* See if some hard register that dies in this insn and is not used in
1875 : : the output is the right class. Only works if the register we pick
1876 : : up can fully hold our output reload. */
1877 : 0 : for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1878 : 0 : if (REG_NOTE_KIND (note) == REG_DEAD
1879 : 0 : && REG_P (XEXP (note, 0))
1880 : 0 : && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1881 : : rld[output_reload].out)
1882 : 0 : && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1883 : 0 : && targetm.hard_regno_mode_ok (regno, rld[output_reload].outmode)
1884 : 0 : && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1885 : : regno)
1886 : 0 : && (hard_regno_nregs (regno, rld[output_reload].outmode)
1887 : 0 : <= REG_NREGS (XEXP (note, 0)))
1888 : : /* Ensure that a secondary or tertiary reload for this output
1889 : : won't want this register. */
1890 : 0 : && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1891 : 0 : || (!(TEST_HARD_REG_BIT
1892 : 0 : (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1893 : 0 : && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1894 : 0 : || !(TEST_HARD_REG_BIT
1895 : 0 : (reg_class_contents[(int) rld[secondary_out].rclass],
1896 : : regno)))))
1897 : 0 : && !fixed_regs[regno]
1898 : : /* Check that a former pseudo is valid; see find_dummy_reload. */
1899 : 0 : && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1900 : 0 : || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1901 : 0 : ORIGINAL_REGNO (XEXP (note, 0)))
1902 : 0 : && REG_NREGS (XEXP (note, 0)) == 1)))
1903 : : {
1904 : 0 : rld[output_reload].reg_rtx
1905 : 0 : = gen_rtx_REG (rld[output_reload].outmode, regno);
1906 : 0 : return;
1907 : : }
1908 : : }
1909 : :
1910 : : /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1911 : : See if one of IN and OUT is a register that may be used;
1912 : : this is desirable since a spill-register won't be needed.
1913 : : If so, return the register rtx that proves acceptable.
1914 : :
1915 : : INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1916 : : RCLASS is the register class required for the reload.
1917 : :
1918 : : If FOR_REAL is >= 0, it is the number of the reload,
1919 : : and in some cases when it can be discovered that OUT doesn't need
1920 : : to be computed, clear out rld[FOR_REAL].out.
1921 : :
1922 : : If FOR_REAL is -1, this should not be done, because this call
1923 : : is just to see if a register can be found, not to find and install it.
1924 : :
1925 : : EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1926 : : puts an additional constraint on being able to use IN for OUT since
1927 : : IN must not appear elsewhere in the insn (it is assumed that IN itself
1928 : : is safe from the earlyclobber). */
1929 : :
1930 : : static rtx
1931 : 0 : find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1932 : : machine_mode inmode, machine_mode outmode,
1933 : : reg_class_t rclass, int for_real, int earlyclobber)
1934 : : {
1935 : 0 : rtx in = real_in;
1936 : 0 : rtx out = real_out;
1937 : 0 : int in_offset = 0;
1938 : 0 : int out_offset = 0;
1939 : 0 : rtx value = 0;
1940 : :
1941 : : /* If operands exceed a word, we can't use either of them
1942 : : unless they have the same size. */
1943 : 0 : if (maybe_ne (GET_MODE_SIZE (outmode), GET_MODE_SIZE (inmode))
1944 : 0 : && (maybe_gt (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1945 : 0 : || maybe_gt (GET_MODE_SIZE (inmode), UNITS_PER_WORD)))
1946 : : return 0;
1947 : :
1948 : : /* Note that {in,out}_offset are needed only when 'in' or 'out'
1949 : : respectively refers to a hard register. */
1950 : :
1951 : : /* Find the inside of any subregs. */
1952 : 0 : while (GET_CODE (out) == SUBREG)
1953 : : {
1954 : 0 : if (REG_P (SUBREG_REG (out))
1955 : 0 : && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1956 : 0 : out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1957 : 0 : GET_MODE (SUBREG_REG (out)),
1958 : 0 : SUBREG_BYTE (out),
1959 : 0 : GET_MODE (out));
1960 : 0 : out = SUBREG_REG (out);
1961 : : }
1962 : 0 : while (GET_CODE (in) == SUBREG)
1963 : : {
1964 : 0 : if (REG_P (SUBREG_REG (in))
1965 : 0 : && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1966 : 0 : in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1967 : 0 : GET_MODE (SUBREG_REG (in)),
1968 : 0 : SUBREG_BYTE (in),
1969 : 0 : GET_MODE (in));
1970 : 0 : in = SUBREG_REG (in);
1971 : : }
1972 : :
1973 : : /* Narrow down the reg class, the same way push_reload will;
1974 : : otherwise we might find a dummy now, but push_reload won't. */
1975 : 0 : {
1976 : 0 : reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1977 : 0 : if (preferred_class != NO_REGS)
1978 : 0 : rclass = (enum reg_class) preferred_class;
1979 : : }
1980 : :
1981 : : /* See if OUT will do. */
1982 : 0 : if (REG_P (out)
1983 : 0 : && REGNO (out) < FIRST_PSEUDO_REGISTER)
1984 : : {
1985 : 0 : unsigned int regno = REGNO (out) + out_offset;
1986 : 0 : unsigned int nwords = hard_regno_nregs (regno, outmode);
1987 : 0 : rtx saved_rtx;
1988 : :
1989 : : /* When we consider whether the insn uses OUT,
1990 : : ignore references within IN. They don't prevent us
1991 : : from copying IN into OUT, because those refs would
1992 : : move into the insn that reloads IN.
1993 : :
1994 : : However, we only ignore IN in its role as this reload.
1995 : : If the insn uses IN elsewhere and it contains OUT,
1996 : : that counts. We can't be sure it's the "same" operand
1997 : : so it might not go through this reload.
1998 : :
1999 : : We also need to avoid using OUT if it, or part of it, is a
2000 : : fixed register. Modifying such registers, even transiently,
2001 : : may have undefined effects on the machine, such as modifying
2002 : : the stack pointer. */
2003 : 0 : saved_rtx = *inloc;
2004 : 0 : *inloc = const0_rtx;
2005 : :
2006 : 0 : if (regno < FIRST_PSEUDO_REGISTER
2007 : 0 : && targetm.hard_regno_mode_ok (regno, outmode)
2008 : 0 : && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2009 : 0 : PATTERN (this_insn), outloc))
2010 : : {
2011 : : unsigned int i;
2012 : :
2013 : 0 : for (i = 0; i < nwords; i++)
2014 : 0 : if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2015 : : regno + i)
2016 : 0 : || fixed_regs[regno + i])
2017 : : break;
2018 : :
2019 : 0 : if (i == nwords)
2020 : : {
2021 : 0 : if (REG_P (real_out))
2022 : : value = real_out;
2023 : : else
2024 : 0 : value = gen_rtx_REG (outmode, regno);
2025 : : }
2026 : : }
2027 : :
2028 : 0 : *inloc = saved_rtx;
2029 : : }
2030 : :
2031 : : /* Consider using IN if OUT was not acceptable
2032 : : or if OUT dies in this insn (like the quotient in a divmod insn).
2033 : : We can't use IN unless it is dies in this insn,
2034 : : which means we must know accurately which hard regs are live.
2035 : : Also, the result can't go in IN if IN is used within OUT,
2036 : : or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2037 : 0 : if (hard_regs_live_known
2038 : 0 : && REG_P (in)
2039 : 0 : && REGNO (in) < FIRST_PSEUDO_REGISTER
2040 : 0 : && (value == 0
2041 : 0 : || find_reg_note (this_insn, REG_UNUSED, real_out))
2042 : 0 : && find_reg_note (this_insn, REG_DEAD, real_in)
2043 : 0 : && !fixed_regs[REGNO (in)]
2044 : 0 : && targetm.hard_regno_mode_ok (REGNO (in),
2045 : : /* The only case where out and real_out
2046 : : might have different modes is where
2047 : : real_out is a subreg, and in that
2048 : : case, out has a real mode. */
2049 : 0 : (GET_MODE (out) != VOIDmode
2050 : : ? GET_MODE (out) : outmode))
2051 : 0 : && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2052 : : /* However only do this if we can be sure that this input
2053 : : operand doesn't correspond with an uninitialized pseudo.
2054 : : global can assign some hardreg to it that is the same as
2055 : : the one assigned to a different, also live pseudo (as it
2056 : : can ignore the conflict). We must never introduce writes
2057 : : to such hardregs, as they would clobber the other live
2058 : : pseudo. See PR 20973. */
2059 : 0 : || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2060 : 0 : ORIGINAL_REGNO (in))
2061 : : /* Similarly, only do this if we can be sure that the death
2062 : : note is still valid. global can assign some hardreg to
2063 : : the pseudo referenced in the note and simultaneously a
2064 : : subword of this hardreg to a different, also live pseudo,
2065 : : because only another subword of the hardreg is actually
2066 : : used in the insn. This cannot happen if the pseudo has
2067 : : been assigned exactly one hardreg. See PR 33732. */
2068 : 0 : && REG_NREGS (in) == 1)))
2069 : : {
2070 : 0 : unsigned int regno = REGNO (in) + in_offset;
2071 : 0 : unsigned int nwords = hard_regno_nregs (regno, inmode);
2072 : :
2073 : 0 : if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2074 : 0 : && ! hard_reg_set_here_p (regno, regno + nwords,
2075 : 0 : PATTERN (this_insn))
2076 : 0 : && (! earlyclobber
2077 : 0 : || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2078 : 0 : PATTERN (this_insn), inloc)))
2079 : : {
2080 : : unsigned int i;
2081 : :
2082 : 0 : for (i = 0; i < nwords; i++)
2083 : 0 : if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2084 : : regno + i))
2085 : : break;
2086 : :
2087 : 0 : if (i == nwords)
2088 : : {
2089 : : /* If we were going to use OUT as the reload reg
2090 : : and changed our mind, it means OUT is a dummy that
2091 : : dies here. So don't bother copying value to it. */
2092 : 0 : if (for_real >= 0 && value == real_out)
2093 : 0 : rld[for_real].out = 0;
2094 : 0 : if (REG_P (real_in))
2095 : : value = real_in;
2096 : : else
2097 : 0 : value = gen_rtx_REG (inmode, regno);
2098 : : }
2099 : : }
2100 : : }
2101 : :
2102 : : return value;
2103 : : }
2104 : :
2105 : : /* This page contains subroutines used mainly for determining
2106 : : whether the IN or an OUT of a reload can serve as the
2107 : : reload register. */
2108 : :
2109 : : /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2110 : :
2111 : : int
2112 : 0 : earlyclobber_operand_p (rtx x)
2113 : : {
2114 : 0 : int i;
2115 : :
2116 : 0 : for (i = 0; i < n_earlyclobbers; i++)
2117 : 0 : if (reload_earlyclobbers[i] == x)
2118 : : return 1;
2119 : :
2120 : : return 0;
2121 : : }
2122 : :
2123 : : /* Return 1 if expression X alters a hard reg in the range
2124 : : from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2125 : : either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2126 : : X should be the body of an instruction. */
2127 : :
2128 : : static int
2129 : 0 : hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2130 : : {
2131 : 0 : if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2132 : : {
2133 : 0 : rtx op0 = SET_DEST (x);
2134 : :
2135 : 0 : while (GET_CODE (op0) == SUBREG)
2136 : 0 : op0 = SUBREG_REG (op0);
2137 : 0 : if (REG_P (op0))
2138 : : {
2139 : 0 : unsigned int r = REGNO (op0);
2140 : :
2141 : : /* See if this reg overlaps range under consideration. */
2142 : 0 : if (r < end_regno
2143 : 0 : && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2144 : : return 1;
2145 : : }
2146 : : }
2147 : 0 : else if (GET_CODE (x) == PARALLEL)
2148 : : {
2149 : 0 : int i = XVECLEN (x, 0) - 1;
2150 : :
2151 : 0 : for (; i >= 0; i--)
2152 : 0 : if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2153 : : return 1;
2154 : : }
2155 : :
2156 : : return 0;
2157 : : }
2158 : :
2159 : : /* Return true if ADDR is a valid memory address for mode MODE
2160 : : in address space AS, and check that each pseudo reg has the
2161 : : proper kind of hard reg. */
2162 : :
2163 : : bool
2164 : 4340098 : strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2165 : : rtx addr, addr_space_t as, code_helper)
2166 : : {
2167 : : #ifdef GO_IF_LEGITIMATE_ADDRESS
2168 : : gcc_assert (ADDR_SPACE_GENERIC_P (as));
2169 : : GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2170 : : return false;
2171 : :
2172 : : win:
2173 : : return true;
2174 : : #else
2175 : 4340098 : return targetm.addr_space.legitimate_address_p (mode, addr, 1, as,
2176 : 4340098 : ERROR_MARK);
2177 : : #endif
2178 : : }
2179 : :
2180 : : /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2181 : : if they are the same hard reg, and has special hacks for
2182 : : autoincrement and autodecrement.
2183 : : This is specifically intended for find_reloads to use
2184 : : in determining whether two operands match.
2185 : : X is the operand whose number is the lower of the two.
2186 : :
2187 : : The value is 2 if Y contains a pre-increment that matches
2188 : : a non-incrementing address in X. */
2189 : :
2190 : : /* ??? To be completely correct, we should arrange to pass
2191 : : for X the output operand and for Y the input operand.
2192 : : For now, we assume that the output operand has the lower number
2193 : : because that is natural in (SET output (... input ...)). */
2194 : :
2195 : : int
2196 : 189105832 : operands_match_p (rtx x, rtx y)
2197 : : {
2198 : 189105832 : int i;
2199 : 189105832 : RTX_CODE code = GET_CODE (x);
2200 : 189105832 : const char *fmt;
2201 : 189105832 : int success_2;
2202 : :
2203 : 189105832 : if (x == y)
2204 : : return 1;
2205 : 87705187 : if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2206 : 80991572 : && (REG_P (y) || (GET_CODE (y) == SUBREG
2207 : 271601 : && REG_P (SUBREG_REG (y)))))
2208 : : {
2209 : 74641940 : int j;
2210 : :
2211 : 74641940 : if (code == SUBREG)
2212 : : {
2213 : 160 : i = REGNO (SUBREG_REG (x));
2214 : 160 : if (i >= FIRST_PSEUDO_REGISTER
2215 : 272 : || simplify_subreg_regno (REGNO (SUBREG_REG (x)),
2216 : 112 : GET_MODE (SUBREG_REG (x)),
2217 : 112 : SUBREG_BYTE (x),
2218 : 112 : GET_MODE (x)) == -1)
2219 : 160 : goto slow;
2220 : 0 : i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2221 : 0 : GET_MODE (SUBREG_REG (x)),
2222 : 0 : SUBREG_BYTE (x),
2223 : 0 : GET_MODE (x));
2224 : : }
2225 : : else
2226 : 74641780 : i = REGNO (x);
2227 : :
2228 : 74641780 : if (GET_CODE (y) == SUBREG)
2229 : : {
2230 : 271601 : j = REGNO (SUBREG_REG (y));
2231 : 271601 : if (j >= FIRST_PSEUDO_REGISTER
2232 : 271603 : || simplify_subreg_regno (REGNO (SUBREG_REG (y)),
2233 : 2 : GET_MODE (SUBREG_REG (y)),
2234 : 2 : SUBREG_BYTE (y),
2235 : 2 : GET_MODE (y)) == -1)
2236 : 271601 : goto slow;
2237 : 0 : j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2238 : 0 : GET_MODE (SUBREG_REG (y)),
2239 : 0 : SUBREG_BYTE (y),
2240 : 0 : GET_MODE (y));
2241 : : }
2242 : : else
2243 : 74370179 : j = REGNO (y);
2244 : :
2245 : : /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2246 : : multiple hard register group of scalar integer registers, so that
2247 : : for example (reg:DI 0) and (reg:SI 1) will be considered the same
2248 : : register. */
2249 : 74370179 : scalar_int_mode xmode;
2250 : 74370179 : if (REG_WORDS_BIG_ENDIAN
2251 : : && is_a <scalar_int_mode> (GET_MODE (x), &xmode)
2252 : : && GET_MODE_SIZE (xmode) > UNITS_PER_WORD
2253 : : && i < FIRST_PSEUDO_REGISTER)
2254 : : i += hard_regno_nregs (i, xmode) - 1;
2255 : 74370179 : scalar_int_mode ymode;
2256 : 74370179 : if (REG_WORDS_BIG_ENDIAN
2257 : : && is_a <scalar_int_mode> (GET_MODE (y), &ymode)
2258 : : && GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2259 : : && j < FIRST_PSEUDO_REGISTER)
2260 : : j += hard_regno_nregs (j, ymode) - 1;
2261 : :
2262 : 74370179 : return i == j;
2263 : : }
2264 : : /* If two operands must match, because they are really a single
2265 : : operand of an assembler insn, then two postincrements are invalid
2266 : : because the assembler insn would increment only once.
2267 : : On the other hand, a postincrement matches ordinary indexing
2268 : : if the postincrement is the output operand. */
2269 : 13063247 : if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2270 : 0 : return operands_match_p (XEXP (x, 0), y);
2271 : : /* Two preincrements are invalid
2272 : : because the assembler insn would increment only once.
2273 : : On the other hand, a preincrement matches ordinary indexing
2274 : : if the preincrement is the input operand.
2275 : : In this case, return 2, since some callers need to do special
2276 : : things when this happens. */
2277 : 13063247 : if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2278 : 13063247 : || GET_CODE (y) == PRE_MODIFY)
2279 : 0 : return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2280 : :
2281 : 13063247 : slow:
2282 : :
2283 : : /* Now we have disposed of all the cases in which different rtx codes
2284 : : can match. */
2285 : 13335008 : if (code != GET_CODE (y))
2286 : : return 0;
2287 : :
2288 : : /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2289 : 6685065 : if (GET_MODE (x) != GET_MODE (y))
2290 : : return 0;
2291 : :
2292 : : /* MEMs referring to different address space are not equivalent. */
2293 : 10253153 : if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2294 : : return 0;
2295 : :
2296 : 6684543 : switch (code)
2297 : : {
2298 : : CASE_CONST_UNIQUE:
2299 : : return 0;
2300 : :
2301 : : case CONST_VECTOR:
2302 : : if (!same_vector_encodings_p (x, y))
2303 : : return false;
2304 : : break;
2305 : :
2306 : 0 : case LABEL_REF:
2307 : 0 : return label_ref_label (x) == label_ref_label (y);
2308 : 28 : case SYMBOL_REF:
2309 : 28 : return XSTR (x, 0) == XSTR (y, 0);
2310 : :
2311 : : default:
2312 : : break;
2313 : : }
2314 : :
2315 : : /* Compare the elements. If any pair of corresponding elements
2316 : : fail to match, return 0 for the whole things. */
2317 : :
2318 : 6684515 : success_2 = 0;
2319 : 6684515 : fmt = GET_RTX_FORMAT (code);
2320 : 19960400 : for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2321 : : {
2322 : 13275936 : int val, j;
2323 : 13275936 : switch (fmt[i])
2324 : : {
2325 : 0 : case 'w':
2326 : 0 : if (XWINT (x, i) != XWINT (y, i))
2327 : : return 0;
2328 : : break;
2329 : :
2330 : 4384 : case 'i':
2331 : 4384 : if (XINT (x, i) != XINT (y, i))
2332 : : return 0;
2333 : : break;
2334 : :
2335 : 0 : case 'L':
2336 : 0 : if (XLOC (x, i) != XLOC (y, i))
2337 : : return 0;
2338 : : break;
2339 : :
2340 : 0 : case 'p':
2341 : 0 : if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2342 : : return 0;
2343 : : break;
2344 : :
2345 : 9702486 : case 'e':
2346 : 9702486 : val = operands_match_p (XEXP (x, i), XEXP (y, i));
2347 : 9702486 : if (val == 0)
2348 : : return 0;
2349 : : /* If any subexpression returns 2,
2350 : : we should return 2 if we are successful. */
2351 : 9702435 : if (val == 2)
2352 : 13275885 : success_2 = 1;
2353 : : break;
2354 : :
2355 : : case '0':
2356 : : break;
2357 : :
2358 : 4384 : case 'E':
2359 : 4384 : if (XVECLEN (x, i) != XVECLEN (y, i))
2360 : : return 0;
2361 : 8768 : for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2362 : : {
2363 : 4384 : val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2364 : 4384 : if (val == 0)
2365 : : return 0;
2366 : 4384 : if (val == 2)
2367 : 0 : success_2 = 1;
2368 : : }
2369 : : break;
2370 : :
2371 : : /* It is believed that rtx's at this level will never
2372 : : contain anything but integers and other rtx's,
2373 : : except for within LABEL_REFs and SYMBOL_REFs. */
2374 : 0 : default:
2375 : 0 : gcc_unreachable ();
2376 : : }
2377 : : }
2378 : 6684464 : return 1 + success_2;
2379 : : }
2380 : :
2381 : : /* Describe the range of registers or memory referenced by X.
2382 : : If X is a register, set REG_FLAG and put the first register
2383 : : number into START and the last plus one into END.
2384 : : If X is a memory reference, put a base address into BASE
2385 : : and a range of integer offsets into START and END.
2386 : : If X is pushing on the stack, we can assume it causes no trouble,
2387 : : so we set the SAFE field. */
2388 : :
2389 : : static struct decomposition
2390 : 644807 : decompose (rtx x)
2391 : : {
2392 : 644807 : struct decomposition val;
2393 : 644807 : int all_const = 0, regno;
2394 : :
2395 : 644807 : memset (&val, 0, sizeof (val));
2396 : :
2397 : 644807 : switch (GET_CODE (x))
2398 : : {
2399 : 0 : case MEM:
2400 : 0 : {
2401 : 0 : rtx base = NULL_RTX, offset = 0;
2402 : 0 : rtx addr = XEXP (x, 0);
2403 : :
2404 : 0 : if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2405 : 0 : || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2406 : : {
2407 : 0 : val.base = XEXP (addr, 0);
2408 : 0 : val.start = -GET_MODE_SIZE (GET_MODE (x));
2409 : 0 : val.end = GET_MODE_SIZE (GET_MODE (x));
2410 : 0 : val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2411 : 0 : return val;
2412 : : }
2413 : :
2414 : 0 : if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2415 : : {
2416 : 0 : if (GET_CODE (XEXP (addr, 1)) == PLUS
2417 : 0 : && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2418 : 0 : && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2419 : : {
2420 : 0 : val.base = XEXP (addr, 0);
2421 : 0 : val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2422 : 0 : val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2423 : 0 : val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2424 : 0 : return val;
2425 : : }
2426 : : }
2427 : :
2428 : 0 : if (GET_CODE (addr) == CONST)
2429 : : {
2430 : 0 : addr = XEXP (addr, 0);
2431 : 0 : all_const = 1;
2432 : : }
2433 : 0 : if (GET_CODE (addr) == PLUS)
2434 : : {
2435 : 0 : if (CONSTANT_P (XEXP (addr, 0)))
2436 : : {
2437 : 0 : base = XEXP (addr, 1);
2438 : 0 : offset = XEXP (addr, 0);
2439 : : }
2440 : 0 : else if (CONSTANT_P (XEXP (addr, 1)))
2441 : : {
2442 : : base = XEXP (addr, 0);
2443 : : offset = XEXP (addr, 1);
2444 : : }
2445 : : }
2446 : :
2447 : : if (offset == 0)
2448 : : {
2449 : 0 : base = addr;
2450 : 0 : offset = const0_rtx;
2451 : : }
2452 : 0 : if (GET_CODE (offset) == CONST)
2453 : 0 : offset = XEXP (offset, 0);
2454 : 0 : if (GET_CODE (offset) == PLUS)
2455 : : {
2456 : 0 : if (CONST_INT_P (XEXP (offset, 0)))
2457 : : {
2458 : 0 : base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2459 : 0 : offset = XEXP (offset, 0);
2460 : : }
2461 : 0 : else if (CONST_INT_P (XEXP (offset, 1)))
2462 : : {
2463 : 0 : base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2464 : 0 : offset = XEXP (offset, 1);
2465 : : }
2466 : : else
2467 : : {
2468 : 0 : base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2469 : 0 : offset = const0_rtx;
2470 : : }
2471 : : }
2472 : 0 : else if (!CONST_INT_P (offset))
2473 : : {
2474 : 0 : base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2475 : 0 : offset = const0_rtx;
2476 : : }
2477 : :
2478 : 0 : if (all_const && GET_CODE (base) == PLUS)
2479 : 0 : base = gen_rtx_CONST (GET_MODE (base), base);
2480 : :
2481 : 0 : gcc_assert (CONST_INT_P (offset));
2482 : :
2483 : 0 : val.start = INTVAL (offset);
2484 : 0 : val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2485 : 0 : val.base = base;
2486 : : }
2487 : 0 : break;
2488 : :
2489 : 644807 : case REG:
2490 : 644807 : val.reg_flag = 1;
2491 : 644807 : regno = true_regnum (x);
2492 : 644807 : if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2493 : : {
2494 : : /* A pseudo with no hard reg. */
2495 : 0 : val.start = REGNO (x);
2496 : 0 : val.end = val.start + 1;
2497 : : }
2498 : : else
2499 : : {
2500 : : /* A hard reg. */
2501 : 644807 : val.start = regno;
2502 : 644807 : val.end = end_hard_regno (GET_MODE (x), regno);
2503 : : }
2504 : : break;
2505 : :
2506 : 0 : case SUBREG:
2507 : 0 : if (!REG_P (SUBREG_REG (x)))
2508 : : /* This could be more precise, but it's good enough. */
2509 : : return decompose (SUBREG_REG (x));
2510 : 0 : regno = true_regnum (x);
2511 : 0 : if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2512 : 0 : return decompose (SUBREG_REG (x));
2513 : :
2514 : : /* A hard reg. */
2515 : 0 : val.reg_flag = 1;
2516 : 0 : val.start = regno;
2517 : 0 : val.end = regno + subreg_nregs (x);
2518 : 0 : break;
2519 : :
2520 : 0 : case SCRATCH:
2521 : : /* This hasn't been assigned yet, so it can't conflict yet. */
2522 : 0 : val.safe = 1;
2523 : 0 : break;
2524 : :
2525 : 0 : default:
2526 : 0 : gcc_assert (CONSTANT_P (x));
2527 : 0 : val.safe = 1;
2528 : 0 : break;
2529 : : }
2530 : 644807 : return val;
2531 : : }
2532 : :
2533 : : /* Return 1 if altering Y will not modify the value of X.
2534 : : Y is also described by YDATA, which should be decompose (Y). */
2535 : :
2536 : : static int
2537 : 644807 : immune_p (rtx x, rtx y, struct decomposition ydata)
2538 : : {
2539 : 644807 : struct decomposition xdata;
2540 : :
2541 : 644807 : if (ydata.reg_flag)
2542 : : /* In this case the decomposition structure contains register
2543 : : numbers rather than byte offsets. */
2544 : 1289614 : return !refers_to_regno_for_reload_p (ydata.start.to_constant (),
2545 : 644807 : ydata.end.to_constant (),
2546 : 644807 : x, (rtx *) 0);
2547 : 0 : if (ydata.safe)
2548 : : return 1;
2549 : :
2550 : 0 : gcc_assert (MEM_P (y));
2551 : : /* If Y is memory and X is not, Y can't affect X. */
2552 : 0 : if (!MEM_P (x))
2553 : : return 1;
2554 : :
2555 : 0 : xdata = decompose (x);
2556 : :
2557 : 0 : if (! rtx_equal_p (xdata.base, ydata.base))
2558 : : {
2559 : : /* If bases are distinct symbolic constants, there is no overlap. */
2560 : 0 : if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2561 : : return 1;
2562 : : /* Constants and stack slots never overlap. */
2563 : 0 : if (CONSTANT_P (xdata.base)
2564 : 0 : && (ydata.base == frame_pointer_rtx
2565 : 0 : || ydata.base == hard_frame_pointer_rtx
2566 : 0 : || ydata.base == stack_pointer_rtx))
2567 : : return 1;
2568 : 0 : if (CONSTANT_P (ydata.base)
2569 : 0 : && (xdata.base == frame_pointer_rtx
2570 : 0 : || xdata.base == hard_frame_pointer_rtx
2571 : 0 : || xdata.base == stack_pointer_rtx))
2572 : : return 1;
2573 : : /* If either base is variable, we don't know anything. */
2574 : : return 0;
2575 : : }
2576 : :
2577 : 0 : return known_ge (xdata.start, ydata.end) || known_ge (ydata.start, xdata.end);
2578 : : }
2579 : :
2580 : : /* Similar, but calls decompose. */
2581 : :
2582 : : int
2583 : 644807 : safe_from_earlyclobber (rtx op, rtx clobber)
2584 : : {
2585 : 644807 : struct decomposition early_data;
2586 : :
2587 : 644807 : early_data = decompose (clobber);
2588 : 644807 : return immune_p (op, clobber, early_data);
2589 : : }
2590 : :
2591 : : /* Main entry point of this file: search the body of INSN
2592 : : for values that need reloading and record them with push_reload.
2593 : : REPLACE nonzero means record also where the values occur
2594 : : so that subst_reloads can be used.
2595 : :
2596 : : IND_LEVELS says how many levels of indirection are supported by this
2597 : : machine; a value of zero means that a memory reference is not a valid
2598 : : memory address.
2599 : :
2600 : : LIVE_KNOWN says we have valid information about which hard
2601 : : regs are live at each point in the program; this is true when
2602 : : we are called from global_alloc but false when stupid register
2603 : : allocation has been done.
2604 : :
2605 : : RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2606 : : which is nonnegative if the reg has been commandeered for reloading into.
2607 : : It is copied into STATIC_RELOAD_REG_P and referenced from there
2608 : : by various subroutines.
2609 : :
2610 : : Return TRUE if some operands need to be changed, because of swapping
2611 : : commutative operands, reg_equiv_address substitution, or whatever. */
2612 : :
2613 : : int
2614 : 0 : find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2615 : : short *reload_reg_p)
2616 : : {
2617 : 0 : int insn_code_number;
2618 : 0 : int i, j;
2619 : 0 : int noperands;
2620 : : /* These start out as the constraints for the insn
2621 : : and they are chewed up as we consider alternatives. */
2622 : 0 : const char *constraints[MAX_RECOG_OPERANDS];
2623 : : /* These are the preferred classes for an operand, or NO_REGS if it isn't
2624 : : a register. */
2625 : 0 : enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2626 : 0 : char pref_or_nothing[MAX_RECOG_OPERANDS];
2627 : : /* Nonzero for a MEM operand whose entire address needs a reload.
2628 : : May be -1 to indicate the entire address may or may not need a reload. */
2629 : 0 : int address_reloaded[MAX_RECOG_OPERANDS];
2630 : : /* Nonzero for an address operand that needs to be completely reloaded.
2631 : : May be -1 to indicate the entire operand may or may not need a reload. */
2632 : 0 : int address_operand_reloaded[MAX_RECOG_OPERANDS];
2633 : : /* Value of enum reload_type to use for operand. */
2634 : 0 : enum reload_type operand_type[MAX_RECOG_OPERANDS];
2635 : : /* Value of enum reload_type to use within address of operand. */
2636 : 0 : enum reload_type address_type[MAX_RECOG_OPERANDS];
2637 : : /* Save the usage of each operand. */
2638 : 0 : enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2639 : 0 : int no_input_reloads = 0, no_output_reloads = 0;
2640 : 0 : int n_alternatives;
2641 : 0 : reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2642 : 0 : char this_alternative_match_win[MAX_RECOG_OPERANDS];
2643 : 0 : char this_alternative_win[MAX_RECOG_OPERANDS];
2644 : 0 : char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2645 : 0 : char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2646 : 0 : int this_alternative_matches[MAX_RECOG_OPERANDS];
2647 : 0 : reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2648 : 0 : int this_alternative_number;
2649 : 0 : int goal_alternative_number = 0;
2650 : 0 : int operand_reloadnum[MAX_RECOG_OPERANDS];
2651 : 0 : int goal_alternative_matches[MAX_RECOG_OPERANDS];
2652 : 0 : int goal_alternative_matched[MAX_RECOG_OPERANDS];
2653 : 0 : char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2654 : 0 : char goal_alternative_win[MAX_RECOG_OPERANDS];
2655 : 0 : char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2656 : 0 : char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2657 : 0 : int goal_alternative_swapped;
2658 : 0 : int best;
2659 : 0 : int commutative;
2660 : 0 : char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2661 : 0 : rtx substed_operand[MAX_RECOG_OPERANDS];
2662 : 0 : rtx body = PATTERN (insn);
2663 : 0 : rtx set = single_set (insn);
2664 : 0 : int goal_earlyclobber = 0, this_earlyclobber;
2665 : 0 : machine_mode operand_mode[MAX_RECOG_OPERANDS];
2666 : 0 : int retval = 0;
2667 : :
2668 : 0 : this_insn = insn;
2669 : 0 : n_reloads = 0;
2670 : 0 : n_replacements = 0;
2671 : 0 : n_earlyclobbers = 0;
2672 : 0 : replace_reloads = replace;
2673 : 0 : hard_regs_live_known = live_known;
2674 : 0 : static_reload_reg_p = reload_reg_p;
2675 : :
2676 : 0 : if (JUMP_P (insn) && INSN_CODE (insn) < 0)
2677 : : {
2678 : 0 : extract_insn (insn);
2679 : 0 : for (i = 0; i < recog_data.n_operands; i++)
2680 : 0 : if (recog_data.operand_type[i] != OP_IN)
2681 : : break;
2682 : 0 : if (i < recog_data.n_operands)
2683 : : {
2684 : 0 : error_for_asm (insn,
2685 : : "the target does not support %<asm goto%> "
2686 : : "with outputs in %<asm%>");
2687 : 0 : ira_nullify_asm_goto (insn);
2688 : 0 : return 0;
2689 : : }
2690 : : }
2691 : :
2692 : : /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads. */
2693 : 0 : if (JUMP_P (insn) || CALL_P (insn))
2694 : 0 : no_output_reloads = 1;
2695 : :
2696 : : /* The eliminated forms of any secondary memory locations are per-insn, so
2697 : : clear them out here. */
2698 : :
2699 : 0 : if (secondary_memlocs_elim_used)
2700 : : {
2701 : 0 : memset (secondary_memlocs_elim, 0,
2702 : 0 : sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2703 : 0 : secondary_memlocs_elim_used = 0;
2704 : : }
2705 : :
2706 : : /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2707 : : is cheap to move between them. If it is not, there may not be an insn
2708 : : to do the copy, so we may need a reload. */
2709 : 0 : if (GET_CODE (body) == SET
2710 : 0 : && REG_P (SET_DEST (body))
2711 : 0 : && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2712 : 0 : && REG_P (SET_SRC (body))
2713 : 0 : && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2714 : 0 : && register_move_cost (GET_MODE (SET_SRC (body)),
2715 : 0 : REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2716 : 0 : REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2717 : : return 0;
2718 : :
2719 : 0 : extract_insn (insn);
2720 : :
2721 : 0 : noperands = reload_n_operands = recog_data.n_operands;
2722 : 0 : n_alternatives = recog_data.n_alternatives;
2723 : :
2724 : : /* Just return "no reloads" if insn has no operands with constraints. */
2725 : 0 : if (noperands == 0 || n_alternatives == 0)
2726 : : return 0;
2727 : :
2728 : 0 : insn_code_number = INSN_CODE (insn);
2729 : 0 : this_insn_is_asm = insn_code_number < 0;
2730 : :
2731 : 0 : memcpy (operand_mode, recog_data.operand_mode,
2732 : 0 : noperands * sizeof (machine_mode));
2733 : 0 : memcpy (constraints, recog_data.constraints,
2734 : : noperands * sizeof (const char *));
2735 : :
2736 : 0 : commutative = -1;
2737 : :
2738 : : /* If we will need to know, later, whether some pair of operands
2739 : : are the same, we must compare them now and save the result.
2740 : : Reloading the base and index registers will clobber them
2741 : : and afterward they will fail to match. */
2742 : :
2743 : 0 : for (i = 0; i < noperands; i++)
2744 : : {
2745 : 0 : const char *p;
2746 : 0 : int c;
2747 : 0 : char *end;
2748 : :
2749 : 0 : substed_operand[i] = recog_data.operand[i];
2750 : 0 : p = constraints[i];
2751 : :
2752 : 0 : modified[i] = RELOAD_READ;
2753 : :
2754 : : /* Scan this operand's constraint to see if it is an output operand,
2755 : : an in-out operand, is commutative, or should match another. */
2756 : :
2757 : 0 : while ((c = *p))
2758 : : {
2759 : 0 : p += CONSTRAINT_LEN (c, p);
2760 : 0 : switch (c)
2761 : : {
2762 : 0 : case '=':
2763 : 0 : modified[i] = RELOAD_WRITE;
2764 : 0 : break;
2765 : 0 : case '+':
2766 : 0 : modified[i] = RELOAD_READ_WRITE;
2767 : 0 : break;
2768 : 0 : case '%':
2769 : 0 : {
2770 : : /* The last operand should not be marked commutative. */
2771 : 0 : gcc_assert (i != noperands - 1);
2772 : :
2773 : : /* We currently only support one commutative pair of
2774 : : operands. Some existing asm code currently uses more
2775 : : than one pair. Previously, that would usually work,
2776 : : but sometimes it would crash the compiler. We
2777 : : continue supporting that case as well as we can by
2778 : : silently ignoring all but the first pair. In the
2779 : : future we may handle it correctly. */
2780 : 0 : if (commutative < 0)
2781 : : commutative = i;
2782 : : else
2783 : 0 : gcc_assert (this_insn_is_asm);
2784 : : }
2785 : : break;
2786 : : /* Use of ISDIGIT is tempting here, but it may get expensive because
2787 : : of locale support we don't want. */
2788 : 0 : case '0': case '1': case '2': case '3': case '4':
2789 : 0 : case '5': case '6': case '7': case '8': case '9':
2790 : 0 : {
2791 : 0 : c = strtoul (p - 1, &end, 10);
2792 : 0 : p = end;
2793 : :
2794 : 0 : operands_match[c][i]
2795 : 0 : = operands_match_p (recog_data.operand[c],
2796 : : recog_data.operand[i]);
2797 : :
2798 : : /* An operand may not match itself. */
2799 : 0 : gcc_assert (c != i);
2800 : :
2801 : : /* If C can be commuted with C+1, and C might need to match I,
2802 : : then C+1 might also need to match I. */
2803 : 0 : if (commutative >= 0)
2804 : : {
2805 : 0 : if (c == commutative || c == commutative + 1)
2806 : : {
2807 : 0 : int other = c + (c == commutative ? 1 : -1);
2808 : 0 : operands_match[other][i]
2809 : 0 : = operands_match_p (recog_data.operand[other],
2810 : : recog_data.operand[i]);
2811 : : }
2812 : 0 : if (i == commutative || i == commutative + 1)
2813 : : {
2814 : 0 : int other = i + (i == commutative ? 1 : -1);
2815 : 0 : operands_match[c][other]
2816 : 0 : = operands_match_p (recog_data.operand[c],
2817 : : recog_data.operand[other]);
2818 : : }
2819 : : /* Note that C is supposed to be less than I.
2820 : : No need to consider altering both C and I because in
2821 : : that case we would alter one into the other. */
2822 : : }
2823 : : }
2824 : : }
2825 : : }
2826 : : }
2827 : :
2828 : : /* Examine each operand that is a memory reference or memory address
2829 : : and reload parts of the addresses into index registers.
2830 : : Also here any references to pseudo regs that didn't get hard regs
2831 : : but are equivalent to constants get replaced in the insn itself
2832 : : with those constants. Nobody will ever see them again.
2833 : :
2834 : : Finally, set up the preferred classes of each operand. */
2835 : :
2836 : 0 : for (i = 0; i < noperands; i++)
2837 : : {
2838 : 0 : RTX_CODE code = GET_CODE (recog_data.operand[i]);
2839 : :
2840 : 0 : address_reloaded[i] = 0;
2841 : 0 : address_operand_reloaded[i] = 0;
2842 : 0 : operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2843 : 0 : : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2844 : : : RELOAD_OTHER);
2845 : 0 : address_type[i]
2846 : 0 : = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2847 : 0 : : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2848 : : : RELOAD_OTHER);
2849 : :
2850 : 0 : if (*constraints[i] == 0)
2851 : : /* Ignore things like match_operator operands. */
2852 : : ;
2853 : 0 : else if (insn_extra_address_constraint
2854 : 0 : (lookup_constraint (constraints[i])))
2855 : : {
2856 : 0 : address_operand_reloaded[i]
2857 : 0 : = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2858 : : recog_data.operand[i],
2859 : : recog_data.operand_loc[i],
2860 : : i, operand_type[i], ind_levels, insn);
2861 : :
2862 : : /* If we now have a simple operand where we used to have a
2863 : : PLUS or MULT or ASHIFT, re-recognize and try again. */
2864 : 0 : if ((OBJECT_P (*recog_data.operand_loc[i])
2865 : 0 : || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2866 : 0 : && (GET_CODE (recog_data.operand[i]) == MULT
2867 : : || GET_CODE (recog_data.operand[i]) == ASHIFT
2868 : : || GET_CODE (recog_data.operand[i]) == PLUS))
2869 : : {
2870 : 0 : INSN_CODE (insn) = -1;
2871 : 0 : retval = find_reloads (insn, replace, ind_levels, live_known,
2872 : : reload_reg_p);
2873 : 0 : return retval;
2874 : : }
2875 : :
2876 : 0 : recog_data.operand[i] = *recog_data.operand_loc[i];
2877 : 0 : substed_operand[i] = recog_data.operand[i];
2878 : :
2879 : : /* Address operands are reloaded in their existing mode,
2880 : : no matter what is specified in the machine description. */
2881 : 0 : operand_mode[i] = GET_MODE (recog_data.operand[i]);
2882 : :
2883 : : /* If the address is a single CONST_INT pick address mode
2884 : : instead otherwise we will later not know in which mode
2885 : : the reload should be performed. */
2886 : 0 : if (operand_mode[i] == VOIDmode)
2887 : 0 : operand_mode[i] = Pmode;
2888 : :
2889 : : }
2890 : 0 : else if (code == MEM)
2891 : : {
2892 : 0 : address_reloaded[i]
2893 : 0 : = find_reloads_address (GET_MODE (recog_data.operand[i]),
2894 : : recog_data.operand_loc[i],
2895 : : XEXP (recog_data.operand[i], 0),
2896 : 0 : &XEXP (recog_data.operand[i], 0),
2897 : : i, address_type[i], ind_levels, insn);
2898 : 0 : recog_data.operand[i] = *recog_data.operand_loc[i];
2899 : 0 : substed_operand[i] = recog_data.operand[i];
2900 : : }
2901 : 0 : else if (code == SUBREG)
2902 : : {
2903 : 0 : rtx reg = SUBREG_REG (recog_data.operand[i]);
2904 : 0 : rtx op
2905 : 0 : = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2906 : : ind_levels,
2907 : : set != 0
2908 : 0 : && &SET_DEST (set) == recog_data.operand_loc[i],
2909 : : insn,
2910 : : &address_reloaded[i]);
2911 : :
2912 : : /* If we made a MEM to load (a part of) the stackslot of a pseudo
2913 : : that didn't get a hard register, emit a USE with a REG_EQUAL
2914 : : note in front so that we might inherit a previous, possibly
2915 : : wider reload. */
2916 : :
2917 : 0 : if (replace
2918 : 0 : && MEM_P (op)
2919 : 0 : && REG_P (reg)
2920 : 0 : && known_ge (GET_MODE_SIZE (GET_MODE (reg)),
2921 : : GET_MODE_SIZE (GET_MODE (op)))
2922 : 0 : && reg_equiv_constant (REGNO (reg)) == 0)
2923 : 0 : set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2924 : : insn),
2925 : 0 : REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2926 : :
2927 : 0 : substed_operand[i] = recog_data.operand[i] = op;
2928 : : }
2929 : 0 : else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2930 : : /* We can get a PLUS as an "operand" as a result of register
2931 : : elimination. See eliminate_regs and gen_reload. We handle
2932 : : a unary operator by reloading the operand. */
2933 : 0 : substed_operand[i] = recog_data.operand[i]
2934 : 0 : = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2935 : : ind_levels, 0, insn,
2936 : : &address_reloaded[i]);
2937 : 0 : else if (code == REG)
2938 : : {
2939 : : /* This is equivalent to calling find_reloads_toplev.
2940 : : The code is duplicated for speed.
2941 : : When we find a pseudo always equivalent to a constant,
2942 : : we replace it by the constant. We must be sure, however,
2943 : : that we don't try to replace it in the insn in which it
2944 : : is being set. */
2945 : 0 : int regno = REGNO (recog_data.operand[i]);
2946 : 0 : if (reg_equiv_constant (regno) != 0
2947 : 0 : && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2948 : : {
2949 : : /* Record the existing mode so that the check if constants are
2950 : : allowed will work when operand_mode isn't specified. */
2951 : :
2952 : 0 : if (operand_mode[i] == VOIDmode)
2953 : 0 : operand_mode[i] = GET_MODE (recog_data.operand[i]);
2954 : :
2955 : 0 : substed_operand[i] = recog_data.operand[i]
2956 : 0 : = reg_equiv_constant (regno);
2957 : : }
2958 : 0 : if (reg_equiv_memory_loc (regno) != 0
2959 : 0 : && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2960 : : /* We need not give a valid is_set_dest argument since the case
2961 : : of a constant equivalence was checked above. */
2962 : 0 : substed_operand[i] = recog_data.operand[i]
2963 : 0 : = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2964 : : ind_levels, 0, insn,
2965 : : &address_reloaded[i]);
2966 : : }
2967 : : /* If the operand is still a register (we didn't replace it with an
2968 : : equivalent), get the preferred class to reload it into. */
2969 : 0 : code = GET_CODE (recog_data.operand[i]);
2970 : 0 : preferred_class[i]
2971 : 0 : = ((code == REG && REGNO (recog_data.operand[i])
2972 : : >= FIRST_PSEUDO_REGISTER)
2973 : 0 : ? reg_preferred_class (REGNO (recog_data.operand[i]))
2974 : : : NO_REGS);
2975 : 0 : pref_or_nothing[i]
2976 : 0 : = (code == REG
2977 : 0 : && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2978 : 0 : && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2979 : : }
2980 : :
2981 : : /* If this is simply a copy from operand 1 to operand 0, merge the
2982 : : preferred classes for the operands. */
2983 : 0 : if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2984 : 0 : && recog_data.operand[1] == SET_SRC (set))
2985 : : {
2986 : 0 : preferred_class[0] = preferred_class[1]
2987 : 0 : = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2988 : 0 : pref_or_nothing[0] |= pref_or_nothing[1];
2989 : 0 : pref_or_nothing[1] |= pref_or_nothing[0];
2990 : : }
2991 : :
2992 : : /* Now see what we need for pseudo-regs that didn't get hard regs
2993 : : or got the wrong kind of hard reg. For this, we must consider
2994 : : all the operands together against the register constraints. */
2995 : :
2996 : 0 : best = MAX_RECOG_OPERANDS * 2 + 600;
2997 : :
2998 : 0 : goal_alternative_swapped = 0;
2999 : :
3000 : : /* The constraints are made of several alternatives.
3001 : : Each operand's constraint looks like foo,bar,... with commas
3002 : : separating the alternatives. The first alternatives for all
3003 : : operands go together, the second alternatives go together, etc.
3004 : :
3005 : : First loop over alternatives. */
3006 : :
3007 : 0 : alternative_mask enabled = get_enabled_alternatives (insn);
3008 : 0 : for (this_alternative_number = 0;
3009 : 0 : this_alternative_number < n_alternatives;
3010 : : this_alternative_number++)
3011 : : {
3012 : 0 : int swapped;
3013 : :
3014 : 0 : if (!TEST_BIT (enabled, this_alternative_number))
3015 : : {
3016 : : int i;
3017 : :
3018 : 0 : for (i = 0; i < recog_data.n_operands; i++)
3019 : 0 : constraints[i] = skip_alternative (constraints[i]);
3020 : :
3021 : 0 : continue;
3022 : 0 : }
3023 : :
3024 : : /* If insn is commutative (it's safe to exchange a certain pair
3025 : : of operands) then we need to try each alternative twice, the
3026 : : second time matching those two operands as if we had
3027 : : exchanged them. To do this, really exchange them in
3028 : : operands. */
3029 : 0 : for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3030 : : {
3031 : : /* Loop over operands for one constraint alternative. */
3032 : : /* LOSERS counts those that don't fit this alternative
3033 : : and would require loading. */
3034 : 0 : int losers = 0;
3035 : : /* BAD is set to 1 if it some operand can't fit this alternative
3036 : : even after reloading. */
3037 : 0 : int bad = 0;
3038 : : /* REJECT is a count of how undesirable this alternative says it is
3039 : : if any reloading is required. If the alternative matches exactly
3040 : : then REJECT is ignored, but otherwise it gets this much
3041 : : counted against it in addition to the reloading needed. Each
3042 : : ? counts three times here since we want the disparaging caused by
3043 : : a bad register class to only count 1/3 as much. */
3044 : 0 : int reject = 0;
3045 : :
3046 : 0 : if (swapped)
3047 : : {
3048 : 0 : recog_data.operand[commutative] = substed_operand[commutative + 1];
3049 : 0 : recog_data.operand[commutative + 1] = substed_operand[commutative];
3050 : : /* Swap the duplicates too. */
3051 : 0 : for (i = 0; i < recog_data.n_dups; i++)
3052 : 0 : if (recog_data.dup_num[i] == commutative
3053 : 0 : || recog_data.dup_num[i] == commutative + 1)
3054 : 0 : *recog_data.dup_loc[i]
3055 : 0 : = recog_data.operand[(int) recog_data.dup_num[i]];
3056 : :
3057 : 0 : std::swap (preferred_class[commutative],
3058 : : preferred_class[commutative + 1]);
3059 : 0 : std::swap (pref_or_nothing[commutative],
3060 : : pref_or_nothing[commutative + 1]);
3061 : 0 : std::swap (address_reloaded[commutative],
3062 : : address_reloaded[commutative + 1]);
3063 : : }
3064 : :
3065 : : this_earlyclobber = 0;
3066 : :
3067 : 0 : for (i = 0; i < noperands; i++)
3068 : : {
3069 : 0 : const char *p = constraints[i];
3070 : 0 : char *end;
3071 : 0 : int len;
3072 : 0 : int win = 0;
3073 : 0 : int did_match = 0;
3074 : : /* 0 => this operand can be reloaded somehow for this alternative. */
3075 : 0 : int badop = 1;
3076 : : /* 0 => this operand can be reloaded if the alternative allows regs. */
3077 : 0 : int winreg = 0;
3078 : 0 : int c;
3079 : 0 : int m;
3080 : 0 : rtx operand = recog_data.operand[i];
3081 : 0 : int offset = 0;
3082 : : /* Nonzero means this is a MEM that must be reloaded into a reg
3083 : : regardless of what the constraint says. */
3084 : 0 : int force_reload = 0;
3085 : 0 : int offmemok = 0;
3086 : : /* Nonzero if a constant forced into memory would be OK for this
3087 : : operand. */
3088 : 0 : int constmemok = 0;
3089 : 0 : int earlyclobber = 0;
3090 : 0 : enum constraint_num cn;
3091 : 0 : enum reg_class cl;
3092 : :
3093 : : /* If the operand is a SUBREG, extract
3094 : : the REG or MEM (or maybe even a constant) within.
3095 : : (Constants can occur as a result of reg_equiv_constant.) */
3096 : :
3097 : 0 : while (GET_CODE (operand) == SUBREG)
3098 : : {
3099 : : /* Offset only matters when operand is a REG and
3100 : : it is a hard reg. This is because it is passed
3101 : : to reg_fits_class_p if it is a REG and all pseudos
3102 : : return 0 from that function. */
3103 : 0 : if (REG_P (SUBREG_REG (operand))
3104 : 0 : && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3105 : : {
3106 : 0 : if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3107 : 0 : GET_MODE (SUBREG_REG (operand)),
3108 : 0 : SUBREG_BYTE (operand),
3109 : 0 : GET_MODE (operand)) < 0)
3110 : 0 : force_reload = 1;
3111 : 0 : offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3112 : 0 : GET_MODE (SUBREG_REG (operand)),
3113 : 0 : SUBREG_BYTE (operand),
3114 : 0 : GET_MODE (operand));
3115 : : }
3116 : 0 : operand = SUBREG_REG (operand);
3117 : : /* Force reload if this is a constant or PLUS or if there may
3118 : : be a problem accessing OPERAND in the outer mode. */
3119 : 0 : scalar_int_mode inner_mode;
3120 : 0 : if (CONSTANT_P (operand)
3121 : 0 : || GET_CODE (operand) == PLUS
3122 : : /* We must force a reload of paradoxical SUBREGs
3123 : : of a MEM because the alignment of the inner value
3124 : : may not be enough to do the outer reference. On
3125 : : big-endian machines, it may also reference outside
3126 : : the object.
3127 : :
3128 : : On machines that extend byte operations and we have a
3129 : : SUBREG where both the inner and outer modes are no wider
3130 : : than a word and the inner mode is narrower, is integral,
3131 : : and gets extended when loaded from memory, combine.cc has
3132 : : made assumptions about the behavior of the machine in such
3133 : : register access. If the data is, in fact, in memory we
3134 : : must always load using the size assumed to be in the
3135 : : register and let the insn do the different-sized
3136 : : accesses.
3137 : :
3138 : : This is doubly true if WORD_REGISTER_OPERATIONS. In
3139 : : this case eliminate_regs has left non-paradoxical
3140 : : subregs for push_reload to see. Make sure it does
3141 : : by forcing the reload.
3142 : :
3143 : : ??? When is it right at this stage to have a subreg
3144 : : of a mem that is _not_ to be handled specially? IMO
3145 : : those should have been reduced to just a mem. */
3146 : 0 : || ((MEM_P (operand)
3147 : 0 : || (REG_P (operand)
3148 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3149 : 0 : && (WORD_REGISTER_OPERATIONS
3150 : : || (((maybe_lt
3151 : 0 : (GET_MODE_BITSIZE (GET_MODE (operand)),
3152 : 0 : BIGGEST_ALIGNMENT))
3153 : : && (paradoxical_subreg_p
3154 : 0 : (operand_mode[i], GET_MODE (operand)))))
3155 : 0 : || BYTES_BIG_ENDIAN
3156 : 0 : || (known_le (GET_MODE_SIZE (operand_mode[i]),
3157 : : UNITS_PER_WORD)
3158 : : && (is_a <scalar_int_mode>
3159 : 0 : (GET_MODE (operand), &inner_mode))
3160 : 0 : && (GET_MODE_SIZE (inner_mode)
3161 : : <= UNITS_PER_WORD)
3162 : 0 : && paradoxical_subreg_p (operand_mode[i],
3163 : : inner_mode)
3164 : : && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)))
3165 : : /* We must force a reload of a SUBREG's inner expression
3166 : : if it is a pseudo that will become a MEM and the MEM
3167 : : has a mode-dependent address, as in that case we
3168 : : obviously cannot change the mode of the MEM to that
3169 : : of the containing SUBREG as that would change the
3170 : : interpretation of the address. */
3171 : 0 : || (REG_P (operand)
3172 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3173 : 0 : && reg_equiv_mem (REGNO (operand))
3174 : 0 : && (mode_dependent_address_p
3175 : 0 : (XEXP (reg_equiv_mem (REGNO (operand)), 0),
3176 : 0 : (MEM_ADDR_SPACE
3177 : : (reg_equiv_mem (REGNO (operand)))))))
3178 : : )
3179 : : force_reload = 1;
3180 : : }
3181 : :
3182 : 0 : this_alternative[i] = NO_REGS;
3183 : 0 : this_alternative_win[i] = 0;
3184 : 0 : this_alternative_match_win[i] = 0;
3185 : 0 : this_alternative_offmemok[i] = 0;
3186 : 0 : this_alternative_earlyclobber[i] = 0;
3187 : 0 : this_alternative_matches[i] = -1;
3188 : :
3189 : : /* An empty constraint or empty alternative
3190 : : allows anything which matched the pattern. */
3191 : 0 : if (*p == 0 || *p == ',')
3192 : 0 : win = 1, badop = 0;
3193 : :
3194 : : /* Scan this alternative's specs for this operand;
3195 : : set WIN if the operand fits any letter in this alternative.
3196 : : Otherwise, clear BADOP if this operand could
3197 : : fit some letter after reloads,
3198 : : or set WINREG if this operand could fit after reloads
3199 : : provided the constraint allows some registers. */
3200 : :
3201 : 0 : do
3202 : 0 : switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3203 : : {
3204 : : case '\0':
3205 : : len = 0;
3206 : : break;
3207 : 0 : case ',':
3208 : 0 : c = '\0';
3209 : 0 : break;
3210 : :
3211 : 0 : case '?':
3212 : 0 : reject += 6;
3213 : 0 : break;
3214 : :
3215 : 0 : case '!':
3216 : 0 : reject = 600;
3217 : 0 : break;
3218 : :
3219 : 0 : case '#':
3220 : : /* Ignore rest of this alternative as far as
3221 : : reloading is concerned. */
3222 : 0 : do
3223 : 0 : p++;
3224 : 0 : while (*p && *p != ',');
3225 : : len = 0;
3226 : : break;
3227 : :
3228 : 0 : case '0': case '1': case '2': case '3': case '4':
3229 : 0 : case '5': case '6': case '7': case '8': case '9':
3230 : 0 : m = strtoul (p, &end, 10);
3231 : 0 : p = end;
3232 : 0 : len = 0;
3233 : :
3234 : 0 : this_alternative_matches[i] = m;
3235 : : /* We are supposed to match a previous operand.
3236 : : If we do, we win if that one did.
3237 : : If we do not, count both of the operands as losers.
3238 : : (This is too conservative, since most of the time
3239 : : only a single reload insn will be needed to make
3240 : : the two operands win. As a result, this alternative
3241 : : may be rejected when it is actually desirable.) */
3242 : 0 : if ((swapped && (m != commutative || i != commutative + 1))
3243 : : /* If we are matching as if two operands were swapped,
3244 : : also pretend that operands_match had been computed
3245 : : with swapped.
3246 : : But if I is the second of those and C is the first,
3247 : : don't exchange them, because operands_match is valid
3248 : : only on one side of its diagonal. */
3249 : 0 : ? (operands_match
3250 : 0 : [(m == commutative || m == commutative + 1)
3251 : 0 : ? 2 * commutative + 1 - m : m]
3252 : 0 : [(i == commutative || i == commutative + 1)
3253 : 0 : ? 2 * commutative + 1 - i : i])
3254 : 0 : : operands_match[m][i])
3255 : : {
3256 : : /* If we are matching a non-offsettable address where an
3257 : : offsettable address was expected, then we must reject
3258 : : this combination, because we can't reload it. */
3259 : 0 : if (this_alternative_offmemok[m]
3260 : 0 : && MEM_P (recog_data.operand[m])
3261 : 0 : && this_alternative[m] == NO_REGS
3262 : 0 : && ! this_alternative_win[m])
3263 : 0 : bad = 1;
3264 : :
3265 : 0 : did_match = this_alternative_win[m];
3266 : : }
3267 : : else
3268 : : {
3269 : : /* Operands don't match. */
3270 : 0 : rtx value;
3271 : 0 : int loc1, loc2;
3272 : : /* Retroactively mark the operand we had to match
3273 : : as a loser, if it wasn't already. */
3274 : 0 : if (this_alternative_win[m])
3275 : 0 : losers++;
3276 : 0 : this_alternative_win[m] = 0;
3277 : 0 : if (this_alternative[m] == NO_REGS)
3278 : 0 : bad = 1;
3279 : : /* But count the pair only once in the total badness of
3280 : : this alternative, if the pair can be a dummy reload.
3281 : : The pointers in operand_loc are not swapped; swap
3282 : : them by hand if necessary. */
3283 : 0 : if (swapped && i == commutative)
3284 : 0 : loc1 = commutative + 1;
3285 : 0 : else if (swapped && i == commutative + 1)
3286 : : loc1 = commutative;
3287 : : else
3288 : 0 : loc1 = i;
3289 : 0 : if (swapped && m == commutative)
3290 : 0 : loc2 = commutative + 1;
3291 : 0 : else if (swapped && m == commutative + 1)
3292 : : loc2 = commutative;
3293 : : else
3294 : 0 : loc2 = m;
3295 : 0 : value
3296 : 0 : = find_dummy_reload (recog_data.operand[i],
3297 : : recog_data.operand[m],
3298 : : recog_data.operand_loc[loc1],
3299 : : recog_data.operand_loc[loc2],
3300 : : operand_mode[i], operand_mode[m],
3301 : : this_alternative[m], -1,
3302 : 0 : this_alternative_earlyclobber[m]);
3303 : :
3304 : 0 : if (value != 0)
3305 : 0 : losers--;
3306 : : }
3307 : : /* This can be fixed with reloads if the operand
3308 : : we are supposed to match can be fixed with reloads. */
3309 : 0 : badop = 0;
3310 : 0 : this_alternative[i] = this_alternative[m];
3311 : :
3312 : : /* If we have to reload this operand and some previous
3313 : : operand also had to match the same thing as this
3314 : : operand, we don't know how to do that. So reject this
3315 : : alternative. */
3316 : 0 : if (! did_match || force_reload)
3317 : 0 : for (j = 0; j < i; j++)
3318 : 0 : if (this_alternative_matches[j]
3319 : : == this_alternative_matches[i])
3320 : : {
3321 : : badop = 1;
3322 : : break;
3323 : : }
3324 : : break;
3325 : :
3326 : 0 : case 'p':
3327 : : /* All necessary reloads for an address_operand
3328 : : were handled in find_reloads_address. */
3329 : 0 : this_alternative[i]
3330 : 0 : = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3331 : : ADDRESS, SCRATCH, insn);
3332 : 0 : win = 1;
3333 : 0 : badop = 0;
3334 : 0 : break;
3335 : :
3336 : 0 : case TARGET_MEM_CONSTRAINT:
3337 : 0 : if (force_reload)
3338 : : break;
3339 : 0 : if (MEM_P (operand)
3340 : 0 : || (REG_P (operand)
3341 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3342 : 0 : && reg_renumber[REGNO (operand)] < 0))
3343 : : win = 1;
3344 : 0 : if (CONST_POOL_OK_P (operand_mode[i], operand))
3345 : : badop = 0;
3346 : : constmemok = 1;
3347 : : break;
3348 : :
3349 : 0 : case '<':
3350 : 0 : if (MEM_P (operand)
3351 : 0 : && ! address_reloaded[i]
3352 : 0 : && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3353 : 0 : || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3354 : 0 : win = 1;
3355 : : break;
3356 : :
3357 : 0 : case '>':
3358 : 0 : if (MEM_P (operand)
3359 : 0 : && ! address_reloaded[i]
3360 : 0 : && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3361 : 0 : || GET_CODE (XEXP (operand, 0)) == POST_INC))
3362 : 0 : win = 1;
3363 : : break;
3364 : :
3365 : : /* Memory operand whose address is not offsettable. */
3366 : 0 : case 'V':
3367 : 0 : if (force_reload)
3368 : : break;
3369 : 0 : if (MEM_P (operand)
3370 : 0 : && ! (ind_levels ? offsettable_memref_p (operand)
3371 : 0 : : offsettable_nonstrict_memref_p (operand))
3372 : : /* Certain mem addresses will become offsettable
3373 : : after they themselves are reloaded. This is important;
3374 : : we don't want our own handling of unoffsettables
3375 : : to override the handling of reg_equiv_address. */
3376 : 0 : && !(REG_P (XEXP (operand, 0))
3377 : : && (ind_levels == 0
3378 : 0 : || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3379 : : win = 1;
3380 : : break;
3381 : :
3382 : : /* Memory operand whose address is offsettable. */
3383 : 0 : case 'o':
3384 : 0 : if (force_reload)
3385 : : break;
3386 : 0 : if ((MEM_P (operand)
3387 : : /* If IND_LEVELS, find_reloads_address won't reload a
3388 : : pseudo that didn't get a hard reg, so we have to
3389 : : reject that case. */
3390 : 0 : && ((ind_levels ? offsettable_memref_p (operand)
3391 : 0 : : offsettable_nonstrict_memref_p (operand))
3392 : : /* A reloaded address is offsettable because it is now
3393 : : just a simple register indirect. */
3394 : 0 : || address_reloaded[i] == 1))
3395 : 0 : || (REG_P (operand)
3396 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3397 : 0 : && reg_renumber[REGNO (operand)] < 0
3398 : : /* If reg_equiv_address is nonzero, we will be
3399 : : loading it into a register; hence it will be
3400 : : offsettable, but we cannot say that reg_equiv_mem
3401 : : is offsettable without checking. */
3402 : 0 : && ((reg_equiv_mem (REGNO (operand)) != 0
3403 : 0 : && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3404 : 0 : || (reg_equiv_address (REGNO (operand)) != 0))))
3405 : : win = 1;
3406 : 0 : if (CONST_POOL_OK_P (operand_mode[i], operand)
3407 : 0 : || MEM_P (operand))
3408 : : badop = 0;
3409 : : constmemok = 1;
3410 : : offmemok = 1;
3411 : : break;
3412 : :
3413 : 0 : case '&':
3414 : : /* Output operand that is stored before the need for the
3415 : : input operands (and their index registers) is over. */
3416 : 0 : earlyclobber = 1, this_earlyclobber = 1;
3417 : 0 : break;
3418 : :
3419 : 0 : case 'X':
3420 : 0 : force_reload = 0;
3421 : 0 : win = 1;
3422 : 0 : break;
3423 : :
3424 : 0 : case 'g':
3425 : 0 : if (! force_reload
3426 : : /* A PLUS is never a valid operand, but reload can make
3427 : : it from a register when eliminating registers. */
3428 : 0 : && GET_CODE (operand) != PLUS
3429 : : /* A SCRATCH is not a valid operand. */
3430 : 0 : && GET_CODE (operand) != SCRATCH
3431 : 0 : && (! CONSTANT_P (operand)
3432 : 0 : || ! flag_pic
3433 : 0 : || LEGITIMATE_PIC_OPERAND_P (operand))
3434 : 0 : && (GENERAL_REGS == ALL_REGS
3435 : 0 : || !REG_P (operand)
3436 : 0 : || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3437 : 0 : && reg_renumber[REGNO (operand)] < 0)))
3438 : : win = 1;
3439 : 0 : cl = GENERAL_REGS;
3440 : 0 : goto reg;
3441 : :
3442 : 0 : default:
3443 : 0 : cn = lookup_constraint (p);
3444 : 0 : switch (get_constraint_type (cn))
3445 : : {
3446 : 0 : case CT_REGISTER:
3447 : 0 : cl = reg_class_for_constraint (cn);
3448 : 0 : if (cl != NO_REGS)
3449 : 0 : goto reg;
3450 : : break;
3451 : :
3452 : 0 : case CT_CONST_INT:
3453 : 0 : if (CONST_INT_P (operand)
3454 : 0 : && (insn_const_int_ok_for_constraint
3455 : 0 : (INTVAL (operand), cn)))
3456 : : win = true;
3457 : : break;
3458 : :
3459 : 0 : case CT_MEMORY:
3460 : 0 : case CT_RELAXED_MEMORY:
3461 : 0 : if (force_reload)
3462 : : break;
3463 : 0 : if (constraint_satisfied_p (operand, cn))
3464 : : win = 1;
3465 : : /* If the address was already reloaded,
3466 : : we win as well. */
3467 : 0 : else if (MEM_P (operand) && address_reloaded[i] == 1)
3468 : : win = 1;
3469 : : /* Likewise if the address will be reloaded because
3470 : : reg_equiv_address is nonzero. For reg_equiv_mem
3471 : : we have to check. */
3472 : 0 : else if (REG_P (operand)
3473 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3474 : 0 : && reg_renumber[REGNO (operand)] < 0
3475 : 0 : && ((reg_equiv_mem (REGNO (operand)) != 0
3476 : 0 : && (constraint_satisfied_p
3477 : 0 : (reg_equiv_mem (REGNO (operand)),
3478 : : cn)))
3479 : 0 : || (reg_equiv_address (REGNO (operand))
3480 : : != 0)))
3481 : : win = 1;
3482 : :
3483 : : /* If we didn't already win, we can reload
3484 : : constants via force_const_mem, and other
3485 : : MEMs by reloading the address like for 'o'. */
3486 : 0 : if (CONST_POOL_OK_P (operand_mode[i], operand)
3487 : 0 : || MEM_P (operand))
3488 : : badop = 0;
3489 : : constmemok = 1;
3490 : : offmemok = 1;
3491 : : break;
3492 : :
3493 : 0 : case CT_SPECIAL_MEMORY:
3494 : 0 : if (force_reload)
3495 : : break;
3496 : 0 : if (constraint_satisfied_p (operand, cn))
3497 : : win = 1;
3498 : : /* Likewise if the address will be reloaded because
3499 : : reg_equiv_address is nonzero. For reg_equiv_mem
3500 : : we have to check. */
3501 : 0 : else if (REG_P (operand)
3502 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3503 : 0 : && reg_renumber[REGNO (operand)] < 0
3504 : 0 : && reg_equiv_mem (REGNO (operand)) != 0
3505 : 0 : && (constraint_satisfied_p
3506 : 0 : (reg_equiv_mem (REGNO (operand)), cn)))
3507 : : win = 1;
3508 : : break;
3509 : :
3510 : 0 : case CT_ADDRESS:
3511 : 0 : if (constraint_satisfied_p (operand, cn))
3512 : 0 : win = 1;
3513 : :
3514 : : /* If we didn't already win, we can reload
3515 : : the address into a base register. */
3516 : 0 : this_alternative[i]
3517 : 0 : = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3518 : : ADDRESS, SCRATCH, insn);
3519 : 0 : badop = 0;
3520 : 0 : break;
3521 : :
3522 : 0 : case CT_FIXED_FORM:
3523 : 0 : if (constraint_satisfied_p (operand, cn))
3524 : 0 : win = 1;
3525 : : break;
3526 : : }
3527 : : break;
3528 : :
3529 : 0 : reg:
3530 : 0 : this_alternative[i]
3531 : 0 : = reg_class_subunion[this_alternative[i]][cl];
3532 : 0 : if (GET_MODE (operand) == BLKmode)
3533 : : break;
3534 : 0 : winreg = 1;
3535 : 0 : if (REG_P (operand)
3536 : 0 : && reg_fits_class_p (operand, this_alternative[i],
3537 : 0 : offset, GET_MODE (recog_data.operand[i])))
3538 : : win = 1;
3539 : : break;
3540 : : }
3541 : 0 : while ((p += len), c);
3542 : :
3543 : 0 : if (swapped == (commutative >= 0 ? 1 : 0))
3544 : 0 : constraints[i] = p;
3545 : :
3546 : : /* If this operand could be handled with a reg,
3547 : : and some reg is allowed, then this operand can be handled. */
3548 : 0 : if (winreg && this_alternative[i] != NO_REGS
3549 : 0 : && (win || !class_only_fixed_regs[this_alternative[i]]))
3550 : 0 : badop = 0;
3551 : :
3552 : : /* Record which operands fit this alternative. */
3553 : 0 : this_alternative_earlyclobber[i] = earlyclobber;
3554 : 0 : if (win && ! force_reload)
3555 : 0 : this_alternative_win[i] = 1;
3556 : 0 : else if (did_match && ! force_reload)
3557 : 0 : this_alternative_match_win[i] = 1;
3558 : : else
3559 : : {
3560 : 0 : int const_to_mem = 0;
3561 : :
3562 : 0 : this_alternative_offmemok[i] = offmemok;
3563 : 0 : losers++;
3564 : 0 : if (badop)
3565 : 0 : bad = 1;
3566 : : /* Alternative loses if it has no regs for a reg operand. */
3567 : 0 : if (REG_P (operand)
3568 : 0 : && this_alternative[i] == NO_REGS
3569 : 0 : && this_alternative_matches[i] < 0)
3570 : 0 : bad = 1;
3571 : :
3572 : : /* If this is a constant that is reloaded into the desired
3573 : : class by copying it to memory first, count that as another
3574 : : reload. This is consistent with other code and is
3575 : : required to avoid choosing another alternative when
3576 : : the constant is moved into memory by this function on
3577 : : an early reload pass. Note that the test here is
3578 : : precisely the same as in the code below that calls
3579 : : force_const_mem. */
3580 : 0 : if (CONST_POOL_OK_P (operand_mode[i], operand)
3581 : 0 : && ((targetm.preferred_reload_class (operand,
3582 : : this_alternative[i])
3583 : : == NO_REGS)
3584 : : || no_input_reloads))
3585 : : {
3586 : 0 : const_to_mem = 1;
3587 : 0 : if (this_alternative[i] != NO_REGS)
3588 : 0 : losers++;
3589 : : }
3590 : :
3591 : : /* Alternative loses if it requires a type of reload not
3592 : : permitted for this insn. We can always reload SCRATCH
3593 : : and objects with a REG_UNUSED note. */
3594 : 0 : if (GET_CODE (operand) != SCRATCH
3595 : 0 : && modified[i] != RELOAD_READ && no_output_reloads
3596 : 0 : && ! find_reg_note (insn, REG_UNUSED, operand))
3597 : : bad = 1;
3598 : 0 : else if (modified[i] != RELOAD_WRITE && no_input_reloads
3599 : : && ! const_to_mem)
3600 : : bad = 1;
3601 : :
3602 : : /* If we can't reload this value at all, reject this
3603 : : alternative. Note that we could also lose due to
3604 : : LIMIT_RELOAD_CLASS, but we don't check that
3605 : : here. */
3606 : :
3607 : 0 : if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3608 : : {
3609 : 0 : if (targetm.preferred_reload_class (operand,
3610 : : this_alternative[i])
3611 : : == NO_REGS)
3612 : 0 : reject = 600;
3613 : :
3614 : 0 : if (operand_type[i] == RELOAD_FOR_OUTPUT
3615 : 0 : && (targetm.preferred_output_reload_class (operand,
3616 : : this_alternative[i])
3617 : : == NO_REGS))
3618 : : reject = 600;
3619 : : }
3620 : :
3621 : : /* We prefer to reload pseudos over reloading other things,
3622 : : since such reloads may be able to be eliminated later.
3623 : : If we are reloading a SCRATCH, we won't be generating any
3624 : : insns, just using a register, so it is also preferred.
3625 : : So bump REJECT in other cases. Don't do this in the
3626 : : case where we are forcing a constant into memory and
3627 : : it will then win since we don't want to have a different
3628 : : alternative match then. */
3629 : 0 : if (! (REG_P (operand)
3630 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3631 : 0 : && GET_CODE (operand) != SCRATCH
3632 : 0 : && ! (const_to_mem && constmemok))
3633 : 0 : reject += 2;
3634 : :
3635 : : /* Input reloads can be inherited more often than output
3636 : : reloads can be removed, so penalize output reloads. */
3637 : 0 : if (operand_type[i] != RELOAD_FOR_INPUT
3638 : 0 : && GET_CODE (operand) != SCRATCH)
3639 : 0 : reject++;
3640 : : }
3641 : :
3642 : : /* If this operand is a pseudo register that didn't get
3643 : : a hard reg and this alternative accepts some
3644 : : register, see if the class that we want is a subset
3645 : : of the preferred class for this register. If not,
3646 : : but it intersects that class, we'd like to use the
3647 : : intersection, but the best we can do is to use the
3648 : : preferred class, if it is instead a subset of the
3649 : : class we want in this alternative. If we can't use
3650 : : it, show that usage of this alternative should be
3651 : : discouraged; it will be discouraged more still if the
3652 : : register is `preferred or nothing'. We do this
3653 : : because it increases the chance of reusing our spill
3654 : : register in a later insn and avoiding a pair of
3655 : : memory stores and loads.
3656 : :
3657 : : Don't bother with this if this alternative will
3658 : : accept this operand.
3659 : :
3660 : : Don't do this for a multiword operand, since it is
3661 : : only a small win and has the risk of requiring more
3662 : : spill registers, which could cause a large loss.
3663 : :
3664 : : Don't do this if the preferred class has only one
3665 : : register because we might otherwise exhaust the
3666 : : class. */
3667 : :
3668 : 0 : if (! win && ! did_match
3669 : 0 : && this_alternative[i] != NO_REGS
3670 : 0 : && known_le (GET_MODE_SIZE (operand_mode[i]), UNITS_PER_WORD)
3671 : 0 : && reg_class_size [(int) preferred_class[i]] > 0
3672 : 0 : && ! small_register_class_p (preferred_class[i]))
3673 : : {
3674 : 0 : if (! reg_class_subset_p (this_alternative[i],
3675 : : preferred_class[i]))
3676 : : {
3677 : : /* Since we don't have a way of forming a register
3678 : : class for the intersection, we just do
3679 : : something special if the preferred class is a
3680 : : subset of the class we have; that's the most
3681 : : common case anyway. */
3682 : 0 : if (reg_class_subset_p (preferred_class[i],
3683 : : this_alternative[i]))
3684 : 0 : this_alternative[i] = preferred_class[i];
3685 : : else
3686 : 0 : reject += (2 + 2 * pref_or_nothing[i]);
3687 : : }
3688 : : }
3689 : : }
3690 : :
3691 : : /* Now see if any output operands that are marked "earlyclobber"
3692 : : in this alternative conflict with any input operands
3693 : : or any memory addresses. */
3694 : :
3695 : 0 : for (i = 0; i < noperands; i++)
3696 : 0 : if (this_alternative_earlyclobber[i]
3697 : 0 : && (this_alternative_win[i] || this_alternative_match_win[i]))
3698 : : {
3699 : 0 : struct decomposition early_data;
3700 : :
3701 : 0 : early_data = decompose (recog_data.operand[i]);
3702 : :
3703 : 0 : gcc_assert (modified[i] != RELOAD_READ);
3704 : :
3705 : 0 : if (this_alternative[i] == NO_REGS)
3706 : : {
3707 : 0 : this_alternative_earlyclobber[i] = 0;
3708 : 0 : gcc_assert (this_insn_is_asm);
3709 : 0 : error_for_asm (this_insn,
3710 : : "%<&%> constraint used with no register class");
3711 : : }
3712 : :
3713 : 0 : for (j = 0; j < noperands; j++)
3714 : : /* Is this an input operand or a memory ref? */
3715 : 0 : if ((MEM_P (recog_data.operand[j])
3716 : 0 : || modified[j] != RELOAD_WRITE)
3717 : 0 : && j != i
3718 : : /* Ignore things like match_operator operands. */
3719 : 0 : && !recog_data.is_operator[j]
3720 : : /* Don't count an input operand that is constrained to match
3721 : : the early clobber operand. */
3722 : 0 : && ! (this_alternative_matches[j] == i
3723 : 0 : && rtx_equal_p (recog_data.operand[i],
3724 : : recog_data.operand[j]))
3725 : : /* Is it altered by storing the earlyclobber operand? */
3726 : 0 : && !immune_p (recog_data.operand[j], recog_data.operand[i],
3727 : : early_data))
3728 : : {
3729 : : /* If the output is in a non-empty few-regs class,
3730 : : it's costly to reload it, so reload the input instead. */
3731 : 0 : if (small_register_class_p (this_alternative[i])
3732 : 0 : && (REG_P (recog_data.operand[j])
3733 : 0 : || GET_CODE (recog_data.operand[j]) == SUBREG))
3734 : : {
3735 : 0 : losers++;
3736 : 0 : this_alternative_win[j] = 0;
3737 : 0 : this_alternative_match_win[j] = 0;
3738 : : }
3739 : : else
3740 : : break;
3741 : : }
3742 : : /* If an earlyclobber operand conflicts with something,
3743 : : it must be reloaded, so request this and count the cost. */
3744 : 0 : if (j != noperands)
3745 : : {
3746 : 0 : losers++;
3747 : 0 : this_alternative_win[i] = 0;
3748 : 0 : this_alternative_match_win[j] = 0;
3749 : 0 : for (j = 0; j < noperands; j++)
3750 : 0 : if (this_alternative_matches[j] == i
3751 : 0 : && this_alternative_match_win[j])
3752 : : {
3753 : 0 : this_alternative_win[j] = 0;
3754 : 0 : this_alternative_match_win[j] = 0;
3755 : 0 : losers++;
3756 : : }
3757 : : }
3758 : : }
3759 : :
3760 : : /* If one alternative accepts all the operands, no reload required,
3761 : : choose that alternative; don't consider the remaining ones. */
3762 : 0 : if (losers == 0)
3763 : : {
3764 : : /* Unswap these so that they are never swapped at `finish'. */
3765 : 0 : if (swapped)
3766 : : {
3767 : 0 : recog_data.operand[commutative] = substed_operand[commutative];
3768 : 0 : recog_data.operand[commutative + 1]
3769 : 0 : = substed_operand[commutative + 1];
3770 : : }
3771 : 0 : for (i = 0; i < noperands; i++)
3772 : : {
3773 : 0 : goal_alternative_win[i] = this_alternative_win[i];
3774 : 0 : goal_alternative_match_win[i] = this_alternative_match_win[i];
3775 : 0 : goal_alternative[i] = this_alternative[i];
3776 : 0 : goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3777 : 0 : goal_alternative_matches[i] = this_alternative_matches[i];
3778 : 0 : goal_alternative_earlyclobber[i]
3779 : 0 : = this_alternative_earlyclobber[i];
3780 : : }
3781 : 0 : goal_alternative_number = this_alternative_number;
3782 : 0 : goal_alternative_swapped = swapped;
3783 : 0 : goal_earlyclobber = this_earlyclobber;
3784 : 0 : goto finish;
3785 : : }
3786 : :
3787 : : /* REJECT, set by the ! and ? constraint characters and when a register
3788 : : would be reloaded into a non-preferred class, discourages the use of
3789 : : this alternative for a reload goal. REJECT is incremented by six
3790 : : for each ? and two for each non-preferred class. */
3791 : 0 : losers = losers * 6 + reject;
3792 : :
3793 : : /* If this alternative can be made to work by reloading,
3794 : : and it needs less reloading than the others checked so far,
3795 : : record it as the chosen goal for reloading. */
3796 : 0 : if (! bad)
3797 : : {
3798 : 0 : if (best > losers)
3799 : : {
3800 : 0 : for (i = 0; i < noperands; i++)
3801 : : {
3802 : 0 : goal_alternative[i] = this_alternative[i];
3803 : 0 : goal_alternative_win[i] = this_alternative_win[i];
3804 : 0 : goal_alternative_match_win[i]
3805 : 0 : = this_alternative_match_win[i];
3806 : 0 : goal_alternative_offmemok[i]
3807 : 0 : = this_alternative_offmemok[i];
3808 : 0 : goal_alternative_matches[i] = this_alternative_matches[i];
3809 : 0 : goal_alternative_earlyclobber[i]
3810 : 0 : = this_alternative_earlyclobber[i];
3811 : : }
3812 : : goal_alternative_swapped = swapped;
3813 : : best = losers;
3814 : : goal_alternative_number = this_alternative_number;
3815 : : goal_earlyclobber = this_earlyclobber;
3816 : : }
3817 : : }
3818 : :
3819 : 0 : if (swapped)
3820 : : {
3821 : : /* If the commutative operands have been swapped, swap
3822 : : them back in order to check the next alternative. */
3823 : 0 : recog_data.operand[commutative] = substed_operand[commutative];
3824 : 0 : recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3825 : : /* Unswap the duplicates too. */
3826 : 0 : for (i = 0; i < recog_data.n_dups; i++)
3827 : 0 : if (recog_data.dup_num[i] == commutative
3828 : 0 : || recog_data.dup_num[i] == commutative + 1)
3829 : 0 : *recog_data.dup_loc[i]
3830 : 0 : = recog_data.operand[(int) recog_data.dup_num[i]];
3831 : :
3832 : : /* Unswap the operand related information as well. */
3833 : 0 : std::swap (preferred_class[commutative],
3834 : : preferred_class[commutative + 1]);
3835 : 0 : std::swap (pref_or_nothing[commutative],
3836 : : pref_or_nothing[commutative + 1]);
3837 : 0 : std::swap (address_reloaded[commutative],
3838 : : address_reloaded[commutative + 1]);
3839 : : }
3840 : : }
3841 : : }
3842 : :
3843 : : /* The operands don't meet the constraints.
3844 : : goal_alternative describes the alternative
3845 : : that we could reach by reloading the fewest operands.
3846 : : Reload so as to fit it. */
3847 : :
3848 : 0 : if (best == MAX_RECOG_OPERANDS * 2 + 600)
3849 : : {
3850 : : /* No alternative works with reloads?? */
3851 : 0 : if (insn_code_number >= 0)
3852 : 0 : fatal_insn ("unable to generate reloads for:", insn);
3853 : 0 : error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3854 : : /* Avoid further trouble with this insn. */
3855 : 0 : PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3856 : 0 : n_reloads = 0;
3857 : 0 : return 0;
3858 : : }
3859 : :
3860 : : /* Jump to `finish' from above if all operands are valid already.
3861 : : In that case, goal_alternative_win is all 1. */
3862 : 0 : finish:
3863 : :
3864 : : /* Right now, for any pair of operands I and J that are required to match,
3865 : : with I < J,
3866 : : goal_alternative_matches[J] is I.
3867 : : Set up goal_alternative_matched as the inverse function:
3868 : : goal_alternative_matched[I] = J. */
3869 : :
3870 : 0 : for (i = 0; i < noperands; i++)
3871 : 0 : goal_alternative_matched[i] = -1;
3872 : :
3873 : 0 : for (i = 0; i < noperands; i++)
3874 : 0 : if (! goal_alternative_win[i]
3875 : 0 : && goal_alternative_matches[i] >= 0)
3876 : 0 : goal_alternative_matched[goal_alternative_matches[i]] = i;
3877 : :
3878 : 0 : for (i = 0; i < noperands; i++)
3879 : 0 : goal_alternative_win[i] |= goal_alternative_match_win[i];
3880 : :
3881 : : /* If the best alternative is with operands 1 and 2 swapped,
3882 : : consider them swapped before reporting the reloads. Update the
3883 : : operand numbers of any reloads already pushed. */
3884 : :
3885 : 0 : if (goal_alternative_swapped)
3886 : : {
3887 : 0 : std::swap (substed_operand[commutative],
3888 : 0 : substed_operand[commutative + 1]);
3889 : 0 : std::swap (recog_data.operand[commutative],
3890 : : recog_data.operand[commutative + 1]);
3891 : 0 : std::swap (*recog_data.operand_loc[commutative],
3892 : 0 : *recog_data.operand_loc[commutative + 1]);
3893 : :
3894 : 0 : for (i = 0; i < recog_data.n_dups; i++)
3895 : 0 : if (recog_data.dup_num[i] == commutative
3896 : 0 : || recog_data.dup_num[i] == commutative + 1)
3897 : 0 : *recog_data.dup_loc[i]
3898 : 0 : = recog_data.operand[(int) recog_data.dup_num[i]];
3899 : :
3900 : 0 : for (i = 0; i < n_reloads; i++)
3901 : : {
3902 : 0 : if (rld[i].opnum == commutative)
3903 : 0 : rld[i].opnum = commutative + 1;
3904 : 0 : else if (rld[i].opnum == commutative + 1)
3905 : 0 : rld[i].opnum = commutative;
3906 : : }
3907 : : }
3908 : :
3909 : 0 : for (i = 0; i < noperands; i++)
3910 : : {
3911 : 0 : operand_reloadnum[i] = -1;
3912 : :
3913 : : /* If this is an earlyclobber operand, we need to widen the scope.
3914 : : The reload must remain valid from the start of the insn being
3915 : : reloaded until after the operand is stored into its destination.
3916 : : We approximate this with RELOAD_OTHER even though we know that we
3917 : : do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3918 : :
3919 : : One special case that is worth checking is when we have an
3920 : : output that is earlyclobber but isn't used past the insn (typically
3921 : : a SCRATCH). In this case, we only need have the reload live
3922 : : through the insn itself, but not for any of our input or output
3923 : : reloads.
3924 : : But we must not accidentally narrow the scope of an existing
3925 : : RELOAD_OTHER reload - leave these alone.
3926 : :
3927 : : In any case, anything needed to address this operand can remain
3928 : : however they were previously categorized. */
3929 : :
3930 : 0 : if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3931 : 0 : operand_type[i]
3932 : 0 : = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3933 : 0 : ? RELOAD_FOR_INSN : RELOAD_OTHER);
3934 : : }
3935 : :
3936 : : /* Any constants that aren't allowed and can't be reloaded
3937 : : into registers are here changed into memory references. */
3938 : 0 : for (i = 0; i < noperands; i++)
3939 : 0 : if (! goal_alternative_win[i])
3940 : : {
3941 : 0 : rtx op = recog_data.operand[i];
3942 : 0 : rtx subreg = NULL_RTX;
3943 : 0 : rtx plus = NULL_RTX;
3944 : 0 : machine_mode mode = operand_mode[i];
3945 : :
3946 : : /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3947 : : push_reload so we have to let them pass here. */
3948 : 0 : if (GET_CODE (op) == SUBREG)
3949 : : {
3950 : 0 : subreg = op;
3951 : 0 : op = SUBREG_REG (op);
3952 : 0 : mode = GET_MODE (op);
3953 : : }
3954 : :
3955 : 0 : if (GET_CODE (op) == PLUS)
3956 : : {
3957 : 0 : plus = op;
3958 : 0 : op = XEXP (op, 1);
3959 : : }
3960 : :
3961 : 0 : if (CONST_POOL_OK_P (mode, op)
3962 : 0 : && ((targetm.preferred_reload_class (op, goal_alternative[i])
3963 : : == NO_REGS)
3964 : : || no_input_reloads))
3965 : : {
3966 : 0 : int this_address_reloaded;
3967 : 0 : rtx tem = force_const_mem (mode, op);
3968 : :
3969 : : /* If we stripped a SUBREG or a PLUS above add it back. */
3970 : 0 : if (plus != NULL_RTX)
3971 : 0 : tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3972 : :
3973 : 0 : if (subreg != NULL_RTX)
3974 : 0 : tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3975 : :
3976 : 0 : this_address_reloaded = 0;
3977 : 0 : substed_operand[i] = recog_data.operand[i]
3978 : 0 : = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3979 : : 0, insn, &this_address_reloaded);
3980 : :
3981 : : /* If the alternative accepts constant pool refs directly
3982 : : there will be no reload needed at all. */
3983 : 0 : if (plus == NULL_RTX
3984 : 0 : && subreg == NULL_RTX
3985 : 0 : && alternative_allows_const_pool_ref (this_address_reloaded != 1
3986 : : ? substed_operand[i]
3987 : : : NULL,
3988 : : recog_data.constraints[i],
3989 : : goal_alternative_number))
3990 : 0 : goal_alternative_win[i] = 1;
3991 : : }
3992 : : }
3993 : :
3994 : : /* Record the values of the earlyclobber operands for the caller. */
3995 : 0 : if (goal_earlyclobber)
3996 : 0 : for (i = 0; i < noperands; i++)
3997 : 0 : if (goal_alternative_earlyclobber[i])
3998 : 0 : reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3999 : :
4000 : : /* Now record reloads for all the operands that need them. */
4001 : 0 : for (i = 0; i < noperands; i++)
4002 : 0 : if (! goal_alternative_win[i])
4003 : : {
4004 : : /* Operands that match previous ones have already been handled. */
4005 : 0 : if (goal_alternative_matches[i] >= 0)
4006 : : ;
4007 : : /* Handle an operand with a nonoffsettable address
4008 : : appearing where an offsettable address will do
4009 : : by reloading the address into a base register.
4010 : :
4011 : : ??? We can also do this when the operand is a register and
4012 : : reg_equiv_mem is not offsettable, but this is a bit tricky,
4013 : : so we don't bother with it. It may not be worth doing. */
4014 : 0 : else if (goal_alternative_matched[i] == -1
4015 : 0 : && goal_alternative_offmemok[i]
4016 : 0 : && MEM_P (recog_data.operand[i]))
4017 : : {
4018 : : /* If the address to be reloaded is a VOIDmode constant,
4019 : : use the default address mode as mode of the reload register,
4020 : : as would have been done by find_reloads_address. */
4021 : 0 : addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4022 : 0 : machine_mode address_mode;
4023 : :
4024 : 0 : address_mode = get_address_mode (recog_data.operand[i]);
4025 : 0 : operand_reloadnum[i]
4026 : 0 : = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4027 : 0 : &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4028 : : base_reg_class (VOIDmode, as, MEM, SCRATCH, insn),
4029 : : address_mode,
4030 : : VOIDmode, 0, 0, i, RELOAD_OTHER);
4031 : 0 : rld[operand_reloadnum[i]].inc
4032 : 0 : = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4033 : :
4034 : : /* If this operand is an output, we will have made any
4035 : : reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4036 : : now we are treating part of the operand as an input, so
4037 : : we must change these to RELOAD_FOR_OTHER_ADDRESS. */
4038 : :
4039 : 0 : if (modified[i] == RELOAD_WRITE)
4040 : : {
4041 : 0 : for (j = 0; j < n_reloads; j++)
4042 : : {
4043 : 0 : if (rld[j].opnum == i)
4044 : : {
4045 : 0 : if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4046 : 0 : rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4047 : 0 : else if (rld[j].when_needed
4048 : : == RELOAD_FOR_OUTADDR_ADDRESS)
4049 : 0 : rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4050 : : }
4051 : : }
4052 : : }
4053 : : }
4054 : 0 : else if (goal_alternative_matched[i] == -1)
4055 : : {
4056 : 0 : operand_reloadnum[i]
4057 : 0 : = push_reload ((modified[i] != RELOAD_WRITE
4058 : : ? recog_data.operand[i] : 0),
4059 : : (modified[i] != RELOAD_READ
4060 : : ? recog_data.operand[i] : 0),
4061 : : (modified[i] != RELOAD_WRITE
4062 : : ? recog_data.operand_loc[i] : 0),
4063 : : (modified[i] != RELOAD_READ
4064 : : ? recog_data.operand_loc[i] : 0),
4065 : 0 : (enum reg_class) goal_alternative[i],
4066 : : (modified[i] == RELOAD_WRITE
4067 : : ? VOIDmode : operand_mode[i]),
4068 : 0 : (modified[i] == RELOAD_READ
4069 : : ? VOIDmode : operand_mode[i]),
4070 : : (insn_code_number < 0 ? 0
4071 : 0 : : insn_data[insn_code_number].operand[i].strict_low),
4072 : : 0, i, operand_type[i]);
4073 : : }
4074 : : /* In a matching pair of operands, one must be input only
4075 : : and the other must be output only.
4076 : : Pass the input operand as IN and the other as OUT. */
4077 : 0 : else if (modified[i] == RELOAD_READ
4078 : 0 : && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4079 : : {
4080 : 0 : operand_reloadnum[i]
4081 : 0 : = push_reload (recog_data.operand[i],
4082 : : recog_data.operand[goal_alternative_matched[i]],
4083 : : recog_data.operand_loc[i],
4084 : : recog_data.operand_loc[goal_alternative_matched[i]],
4085 : 0 : (enum reg_class) goal_alternative[i],
4086 : : operand_mode[i],
4087 : : operand_mode[goal_alternative_matched[i]],
4088 : : 0, 0, i, RELOAD_OTHER);
4089 : 0 : operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4090 : : }
4091 : 0 : else if (modified[i] == RELOAD_WRITE
4092 : 0 : && modified[goal_alternative_matched[i]] == RELOAD_READ)
4093 : : {
4094 : 0 : operand_reloadnum[goal_alternative_matched[i]]
4095 : 0 : = push_reload (recog_data.operand[goal_alternative_matched[i]],
4096 : : recog_data.operand[i],
4097 : : recog_data.operand_loc[goal_alternative_matched[i]],
4098 : : recog_data.operand_loc[i],
4099 : 0 : (enum reg_class) goal_alternative[i],
4100 : : operand_mode[goal_alternative_matched[i]],
4101 : : operand_mode[i],
4102 : : 0, 0, i, RELOAD_OTHER);
4103 : 0 : operand_reloadnum[i] = output_reloadnum;
4104 : : }
4105 : : else
4106 : : {
4107 : 0 : gcc_assert (insn_code_number < 0);
4108 : 0 : error_for_asm (insn, "inconsistent operand constraints "
4109 : : "in an %<asm%>");
4110 : : /* Avoid further trouble with this insn. */
4111 : 0 : PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4112 : 0 : n_reloads = 0;
4113 : 0 : return 0;
4114 : : }
4115 : : }
4116 : 0 : else if (goal_alternative_matched[i] < 0
4117 : 0 : && goal_alternative_matches[i] < 0
4118 : 0 : && address_operand_reloaded[i] != 1
4119 : 0 : && optimize)
4120 : : {
4121 : : /* For each non-matching operand that's a MEM or a pseudo-register
4122 : : that didn't get a hard register, make an optional reload.
4123 : : This may get done even if the insn needs no reloads otherwise. */
4124 : :
4125 : 0 : rtx operand = recog_data.operand[i];
4126 : :
4127 : 0 : while (GET_CODE (operand) == SUBREG)
4128 : 0 : operand = SUBREG_REG (operand);
4129 : 0 : if ((MEM_P (operand)
4130 : 0 : || (REG_P (operand)
4131 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4132 : : /* If this is only for an output, the optional reload would not
4133 : : actually cause us to use a register now, just note that
4134 : : something is stored here. */
4135 : 0 : && (goal_alternative[i] != NO_REGS
4136 : 0 : || modified[i] == RELOAD_WRITE)
4137 : : && ! no_input_reloads
4138 : : /* An optional output reload might allow to delete INSN later.
4139 : : We mustn't make in-out reloads on insns that are not permitted
4140 : : output reloads.
4141 : : If this is an asm, we can't delete it; we must not even call
4142 : : push_reload for an optional output reload in this case,
4143 : : because we can't be sure that the constraint allows a register,
4144 : : and push_reload verifies the constraints for asms. */
4145 : 0 : && (modified[i] == RELOAD_READ
4146 : 0 : || (! no_output_reloads && ! this_insn_is_asm)))
4147 : 0 : operand_reloadnum[i]
4148 : 0 : = push_reload ((modified[i] != RELOAD_WRITE
4149 : : ? recog_data.operand[i] : 0),
4150 : : (modified[i] != RELOAD_READ
4151 : : ? recog_data.operand[i] : 0),
4152 : : (modified[i] != RELOAD_WRITE
4153 : : ? recog_data.operand_loc[i] : 0),
4154 : : (modified[i] != RELOAD_READ
4155 : : ? recog_data.operand_loc[i] : 0),
4156 : : (enum reg_class) goal_alternative[i],
4157 : : (modified[i] == RELOAD_WRITE
4158 : : ? VOIDmode : operand_mode[i]),
4159 : : (modified[i] == RELOAD_READ
4160 : : ? VOIDmode : operand_mode[i]),
4161 : : (insn_code_number < 0 ? 0
4162 : 0 : : insn_data[insn_code_number].operand[i].strict_low),
4163 : : 1, i, operand_type[i]);
4164 : : /* If a memory reference remains (either as a MEM or a pseudo that
4165 : : did not get a hard register), yet we can't make an optional
4166 : : reload, check if this is actually a pseudo register reference;
4167 : : we then need to emit a USE and/or a CLOBBER so that reload
4168 : : inheritance will do the right thing. */
4169 : 0 : else if (replace
4170 : 0 : && (MEM_P (operand)
4171 : 0 : || (REG_P (operand)
4172 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4173 : 0 : && reg_renumber [REGNO (operand)] < 0)))
4174 : : {
4175 : 0 : operand = *recog_data.operand_loc[i];
4176 : :
4177 : 0 : while (GET_CODE (operand) == SUBREG)
4178 : 0 : operand = SUBREG_REG (operand);
4179 : 0 : if (REG_P (operand))
4180 : : {
4181 : 0 : if (modified[i] != RELOAD_WRITE)
4182 : : /* We mark the USE with QImode so that we recognize
4183 : : it as one that can be safely deleted at the end
4184 : : of reload. */
4185 : 0 : PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4186 : : insn), QImode);
4187 : 0 : if (modified[i] != RELOAD_READ)
4188 : 0 : emit_insn_after (gen_clobber (operand), insn);
4189 : : }
4190 : : }
4191 : : }
4192 : 0 : else if (goal_alternative_matches[i] >= 0
4193 : 0 : && goal_alternative_win[goal_alternative_matches[i]]
4194 : 0 : && modified[i] == RELOAD_READ
4195 : 0 : && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4196 : 0 : && ! no_input_reloads && ! no_output_reloads
4197 : 0 : && optimize)
4198 : : {
4199 : : /* Similarly, make an optional reload for a pair of matching
4200 : : objects that are in MEM or a pseudo that didn't get a hard reg. */
4201 : :
4202 : 0 : rtx operand = recog_data.operand[i];
4203 : :
4204 : 0 : while (GET_CODE (operand) == SUBREG)
4205 : 0 : operand = SUBREG_REG (operand);
4206 : 0 : if ((MEM_P (operand)
4207 : 0 : || (REG_P (operand)
4208 : 0 : && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4209 : 0 : && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4210 : 0 : operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4211 : 0 : = push_reload (recog_data.operand[goal_alternative_matches[i]],
4212 : : recog_data.operand[i],
4213 : : recog_data.operand_loc[goal_alternative_matches[i]],
4214 : : recog_data.operand_loc[i],
4215 : : (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4216 : : operand_mode[goal_alternative_matches[i]],
4217 : : operand_mode[i],
4218 : : 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4219 : : }
4220 : :
4221 : : /* Perform whatever substitutions on the operands we are supposed
4222 : : to make due to commutativity or replacement of registers
4223 : : with equivalent constants or memory slots. */
4224 : :
4225 : 0 : for (i = 0; i < noperands; i++)
4226 : : {
4227 : : /* We only do this on the last pass through reload, because it is
4228 : : possible for some data (like reg_equiv_address) to be changed during
4229 : : later passes. Moreover, we lose the opportunity to get a useful
4230 : : reload_{in,out}_reg when we do these replacements. */
4231 : :
4232 : 0 : if (replace)
4233 : : {
4234 : 0 : rtx substitution = substed_operand[i];
4235 : :
4236 : 0 : *recog_data.operand_loc[i] = substitution;
4237 : :
4238 : : /* If we're replacing an operand with a LABEL_REF, we need to
4239 : : make sure that there's a REG_LABEL_OPERAND note attached to
4240 : : this instruction. */
4241 : 0 : if (GET_CODE (substitution) == LABEL_REF
4242 : 0 : && !find_reg_note (insn, REG_LABEL_OPERAND,
4243 : 0 : label_ref_label (substitution))
4244 : : /* For a JUMP_P, if it was a branch target it must have
4245 : : already been recorded as such. */
4246 : 0 : && (!JUMP_P (insn)
4247 : 0 : || !label_is_jump_target_p (label_ref_label (substitution),
4248 : : insn)))
4249 : : {
4250 : 0 : add_reg_note (insn, REG_LABEL_OPERAND,
4251 : 0 : label_ref_label (substitution));
4252 : 0 : if (LABEL_P (label_ref_label (substitution)))
4253 : 0 : ++LABEL_NUSES (label_ref_label (substitution));
4254 : : }
4255 : :
4256 : : }
4257 : : else
4258 : 0 : retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4259 : : }
4260 : :
4261 : : /* If this insn pattern contains any MATCH_DUP's, make sure that
4262 : : they will be substituted if the operands they match are substituted.
4263 : : Also do now any substitutions we already did on the operands.
4264 : :
4265 : : Don't do this if we aren't making replacements because we might be
4266 : : propagating things allocated by frame pointer elimination into places
4267 : : it doesn't expect. */
4268 : :
4269 : 0 : if (insn_code_number >= 0 && replace)
4270 : 0 : for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4271 : : {
4272 : 0 : int opno = recog_data.dup_num[i];
4273 : 0 : *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4274 : 0 : dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4275 : : }
4276 : :
4277 : : #if 0
4278 : : /* This loses because reloading of prior insns can invalidate the equivalence
4279 : : (or at least find_equiv_reg isn't smart enough to find it any more),
4280 : : causing this insn to need more reload regs than it needed before.
4281 : : It may be too late to make the reload regs available.
4282 : : Now this optimization is done safely in choose_reload_regs. */
4283 : :
4284 : : /* For each reload of a reg into some other class of reg,
4285 : : search for an existing equivalent reg (same value now) in the right class.
4286 : : We can use it as long as we don't need to change its contents. */
4287 : : for (i = 0; i < n_reloads; i++)
4288 : : if (rld[i].reg_rtx == 0
4289 : : && rld[i].in != 0
4290 : : && REG_P (rld[i].in)
4291 : : && rld[i].out == 0)
4292 : : {
4293 : : rld[i].reg_rtx
4294 : : = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4295 : : static_reload_reg_p, 0, rld[i].inmode);
4296 : : /* Prevent generation of insn to load the value
4297 : : because the one we found already has the value. */
4298 : : if (rld[i].reg_rtx)
4299 : : rld[i].in = rld[i].reg_rtx;
4300 : : }
4301 : : #endif
4302 : :
4303 : : /* If we detected error and replaced asm instruction by USE, forget about the
4304 : : reloads. */
4305 : 0 : if (GET_CODE (PATTERN (insn)) == USE
4306 : 0 : && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4307 : 0 : n_reloads = 0;
4308 : :
4309 : : /* Perhaps an output reload can be combined with another
4310 : : to reduce needs by one. */
4311 : 0 : if (!goal_earlyclobber)
4312 : 0 : combine_reloads ();
4313 : :
4314 : : /* If we have a pair of reloads for parts of an address, they are reloading
4315 : : the same object, the operands themselves were not reloaded, and they
4316 : : are for two operands that are supposed to match, merge the reloads and
4317 : : change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4318 : :
4319 : 0 : for (i = 0; i < n_reloads; i++)
4320 : : {
4321 : 0 : int k;
4322 : :
4323 : 0 : for (j = i + 1; j < n_reloads; j++)
4324 : 0 : if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4325 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4326 : 0 : || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4327 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4328 : 0 : && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4329 : 0 : || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4330 : 0 : || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4331 : 0 : || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4332 : 0 : && rtx_equal_p (rld[i].in, rld[j].in)
4333 : 0 : && (operand_reloadnum[rld[i].opnum] < 0
4334 : 0 : || rld[operand_reloadnum[rld[i].opnum]].optional)
4335 : 0 : && (operand_reloadnum[rld[j].opnum] < 0
4336 : 0 : || rld[operand_reloadnum[rld[j].opnum]].optional)
4337 : 0 : && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4338 : 0 : || (goal_alternative_matches[rld[j].opnum]
4339 : : == rld[i].opnum)))
4340 : : {
4341 : 0 : for (k = 0; k < n_replacements; k++)
4342 : 0 : if (replacements[k].what == j)
4343 : 0 : replacements[k].what = i;
4344 : :
4345 : 0 : if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4346 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4347 : 0 : rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4348 : : else
4349 : 0 : rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4350 : 0 : rld[j].in = 0;
4351 : : }
4352 : : }
4353 : :
4354 : : /* Scan all the reloads and update their type.
4355 : : If a reload is for the address of an operand and we didn't reload
4356 : : that operand, change the type. Similarly, change the operand number
4357 : : of a reload when two operands match. If a reload is optional, treat it
4358 : : as though the operand isn't reloaded.
4359 : :
4360 : : ??? This latter case is somewhat odd because if we do the optional
4361 : : reload, it means the object is hanging around. Thus we need only
4362 : : do the address reload if the optional reload was NOT done.
4363 : :
4364 : : Change secondary reloads to be the address type of their operand, not
4365 : : the normal type.
4366 : :
4367 : : If an operand's reload is now RELOAD_OTHER, change any
4368 : : RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4369 : : RELOAD_FOR_OTHER_ADDRESS. */
4370 : :
4371 : 0 : for (i = 0; i < n_reloads; i++)
4372 : : {
4373 : 0 : if (rld[i].secondary_p
4374 : 0 : && rld[i].when_needed == operand_type[rld[i].opnum])
4375 : 0 : rld[i].when_needed = address_type[rld[i].opnum];
4376 : :
4377 : 0 : if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4378 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4379 : 0 : || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4380 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4381 : 0 : && (operand_reloadnum[rld[i].opnum] < 0
4382 : 0 : || rld[operand_reloadnum[rld[i].opnum]].optional))
4383 : : {
4384 : : /* If we have a secondary reload to go along with this reload,
4385 : : change its type to RELOAD_FOR_OPADDR_ADDR. */
4386 : :
4387 : 0 : if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4388 : 0 : || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4389 : 0 : && rld[i].secondary_in_reload != -1)
4390 : : {
4391 : 0 : int secondary_in_reload = rld[i].secondary_in_reload;
4392 : :
4393 : 0 : rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4394 : :
4395 : : /* If there's a tertiary reload we have to change it also. */
4396 : 0 : if (secondary_in_reload > 0
4397 : 0 : && rld[secondary_in_reload].secondary_in_reload != -1)
4398 : 0 : rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4399 : 0 : = RELOAD_FOR_OPADDR_ADDR;
4400 : : }
4401 : :
4402 : 0 : if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4403 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4404 : 0 : && rld[i].secondary_out_reload != -1)
4405 : : {
4406 : 0 : int secondary_out_reload = rld[i].secondary_out_reload;
4407 : :
4408 : 0 : rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4409 : :
4410 : : /* If there's a tertiary reload we have to change it also. */
4411 : 0 : if (secondary_out_reload
4412 : 0 : && rld[secondary_out_reload].secondary_out_reload != -1)
4413 : 0 : rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4414 : 0 : = RELOAD_FOR_OPADDR_ADDR;
4415 : : }
4416 : :
4417 : 0 : if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4418 : 0 : || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4419 : 0 : rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4420 : : else
4421 : 0 : rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4422 : : }
4423 : :
4424 : 0 : if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4425 : 0 : || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4426 : 0 : && operand_reloadnum[rld[i].opnum] >= 0
4427 : 0 : && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4428 : : == RELOAD_OTHER))
4429 : 0 : rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4430 : :
4431 : 0 : if (goal_alternative_matches[rld[i].opnum] >= 0)
4432 : 0 : rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4433 : : }
4434 : :
4435 : : /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4436 : : If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4437 : : reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4438 : :
4439 : : choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4440 : : conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4441 : : single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4442 : : However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4443 : : then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4444 : : RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4445 : : This is complicated by the fact that a single operand can have more
4446 : : than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4447 : : choose_reload_regs without affecting code quality, and cases that
4448 : : actually fail are extremely rare, so it turns out to be better to fix
4449 : : the problem here by not generating cases that choose_reload_regs will
4450 : : fail for. */
4451 : : /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4452 : : RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4453 : : a single operand.
4454 : : We can reduce the register pressure by exploiting that a
4455 : : RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4456 : : does not conflict with any of them, if it is only used for the first of
4457 : : the RELOAD_FOR_X_ADDRESS reloads. */
4458 : : {
4459 : 0 : int first_op_addr_num = -2;
4460 : : int first_inpaddr_num[MAX_RECOG_OPERANDS];
4461 : : int first_outpaddr_num[MAX_RECOG_OPERANDS];
4462 : 0 : int need_change = 0;
4463 : : /* We use last_op_addr_reload and the contents of the above arrays
4464 : : first as flags - -2 means no instance encountered, -1 means exactly
4465 : : one instance encountered.
4466 : : If more than one instance has been encountered, we store the reload
4467 : : number of the first reload of the kind in question; reload numbers
4468 : : are known to be non-negative. */
4469 : 0 : for (i = 0; i < noperands; i++)
4470 : 0 : first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4471 : 0 : for (i = n_reloads - 1; i >= 0; i--)
4472 : : {
4473 : 0 : switch (rld[i].when_needed)
4474 : : {
4475 : 0 : case RELOAD_FOR_OPERAND_ADDRESS:
4476 : 0 : if (++first_op_addr_num >= 0)
4477 : : {
4478 : 0 : first_op_addr_num = i;
4479 : 0 : need_change = 1;
4480 : : }
4481 : : break;
4482 : 0 : case RELOAD_FOR_INPUT_ADDRESS:
4483 : 0 : if (++first_inpaddr_num[rld[i].opnum] >= 0)
4484 : : {
4485 : 0 : first_inpaddr_num[rld[i].opnum] = i;
4486 : 0 : need_change = 1;
4487 : : }
4488 : : break;
4489 : 0 : case RELOAD_FOR_OUTPUT_ADDRESS:
4490 : 0 : if (++first_outpaddr_num[rld[i].opnum] >= 0)
4491 : : {
4492 : 0 : first_outpaddr_num[rld[i].opnum] = i;
4493 : 0 : need_change = 1;
4494 : : }
4495 : : break;
4496 : : default:
4497 : : break;
4498 : : }
4499 : : }
4500 : :
4501 : 0 : if (need_change)
4502 : : {
4503 : 0 : for (i = 0; i < n_reloads; i++)
4504 : : {
4505 : 0 : int first_num;
4506 : 0 : enum reload_type type;
4507 : :
4508 : 0 : switch (rld[i].when_needed)
4509 : : {
4510 : : case RELOAD_FOR_OPADDR_ADDR:
4511 : : first_num = first_op_addr_num;
4512 : : type = RELOAD_FOR_OPERAND_ADDRESS;
4513 : : break;
4514 : 0 : case RELOAD_FOR_INPADDR_ADDRESS:
4515 : 0 : first_num = first_inpaddr_num[rld[i].opnum];
4516 : 0 : type = RELOAD_FOR_INPUT_ADDRESS;
4517 : 0 : break;
4518 : 0 : case RELOAD_FOR_OUTADDR_ADDRESS:
4519 : 0 : first_num = first_outpaddr_num[rld[i].opnum];
4520 : 0 : type = RELOAD_FOR_OUTPUT_ADDRESS;
4521 : 0 : break;
4522 : 0 : default:
4523 : 0 : continue;
4524 : : }
4525 : 0 : if (first_num < 0)
4526 : 0 : continue;
4527 : 0 : else if (i > first_num)
4528 : 0 : rld[i].when_needed = type;
4529 : : else
4530 : : {
4531 : : /* Check if the only TYPE reload that uses reload I is
4532 : : reload FIRST_NUM. */
4533 : 0 : for (j = n_reloads - 1; j > first_num; j--)
4534 : : {
4535 : 0 : if (rld[j].when_needed == type
4536 : 0 : && (rld[i].secondary_p
4537 : 0 : ? rld[j].secondary_in_reload == i
4538 : 0 : : reg_mentioned_p (rld[i].in, rld[j].in)))
4539 : : {
4540 : 0 : rld[i].when_needed = type;
4541 : 0 : break;
4542 : : }
4543 : : }
4544 : : }
4545 : : }
4546 : : }
4547 : : }
4548 : :
4549 : : /* See if we have any reloads that are now allowed to be merged
4550 : : because we've changed when the reload is needed to
4551 : : RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4552 : : check for the most common cases. */
4553 : :
4554 : 0 : for (i = 0; i < n_reloads; i++)
4555 : 0 : if (rld[i].in != 0 && rld[i].out == 0
4556 : 0 : && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4557 : 0 : || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4558 : 0 : || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4559 : 0 : for (j = 0; j < n_reloads; j++)
4560 : 0 : if (i != j && rld[j].in != 0 && rld[j].out == 0
4561 : 0 : && rld[j].when_needed == rld[i].when_needed
4562 : 0 : && MATCHES (rld[i].in, rld[j].in)
4563 : 0 : && rld[i].rclass == rld[j].rclass
4564 : 0 : && !rld[i].nocombine && !rld[j].nocombine
4565 : 0 : && rld[i].reg_rtx == rld[j].reg_rtx)
4566 : : {
4567 : 0 : rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4568 : 0 : transfer_replacements (i, j);
4569 : 0 : rld[j].in = 0;
4570 : : }
4571 : :
4572 : : /* Compute reload_mode and reload_nregs. */
4573 : 0 : for (i = 0; i < n_reloads; i++)
4574 : : {
4575 : 0 : rld[i].mode = rld[i].inmode;
4576 : 0 : if (rld[i].mode == VOIDmode
4577 : 0 : || partial_subreg_p (rld[i].mode, rld[i].outmode))
4578 : 0 : rld[i].mode = rld[i].outmode;
4579 : :
4580 : 0 : rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4581 : : }
4582 : :
4583 : : /* Special case a simple move with an input reload and a
4584 : : destination of a hard reg, if the hard reg is ok, use it. */
4585 : 0 : for (i = 0; i < n_reloads; i++)
4586 : 0 : if (rld[i].when_needed == RELOAD_FOR_INPUT
4587 : 0 : && GET_CODE (PATTERN (insn)) == SET
4588 : 0 : && REG_P (SET_DEST (PATTERN (insn)))
4589 : 0 : && (SET_SRC (PATTERN (insn)) == rld[i].in
4590 : 0 : || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4591 : 0 : && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4592 : : {
4593 : 0 : rtx dest = SET_DEST (PATTERN (insn));
4594 : 0 : unsigned int regno = REGNO (dest);
4595 : :
4596 : 0 : if (regno < FIRST_PSEUDO_REGISTER
4597 : 0 : && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4598 : 0 : && targetm.hard_regno_mode_ok (regno, rld[i].mode))
4599 : : {
4600 : 0 : int nr = hard_regno_nregs (regno, rld[i].mode);
4601 : 0 : int ok = 1, nri;
4602 : :
4603 : 0 : for (nri = 1; nri < nr; nri ++)
4604 : 0 : if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4605 : : {
4606 : : ok = 0;
4607 : : break;
4608 : : }
4609 : :
4610 : 0 : if (ok)
4611 : 0 : rld[i].reg_rtx = dest;
4612 : : }
4613 : : }
4614 : :
4615 : : return retval;
4616 : : }
4617 : :
4618 : : /* Return true if alternative number ALTNUM in constraint-string
4619 : : CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4620 : : MEM gives the reference if its address hasn't been fully reloaded,
4621 : : otherwise it is NULL. */
4622 : :
4623 : : static bool
4624 : 0 : alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4625 : : const char *constraint, int altnum)
4626 : : {
4627 : 0 : int c;
4628 : :
4629 : : /* Skip alternatives before the one requested. */
4630 : 0 : while (altnum > 0)
4631 : : {
4632 : 0 : while (*constraint++ != ',')
4633 : : ;
4634 : 0 : altnum--;
4635 : : }
4636 : : /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4637 : : If one of them is present, this alternative accepts the result of
4638 : : passing a constant-pool reference through find_reloads_toplev.
4639 : :
4640 : : The same is true of extra memory constraints if the address
4641 : : was reloaded into a register. However, the target may elect
4642 : : to disallow the original constant address, forcing it to be
4643 : : reloaded into a register instead. */
4644 : 0 : for (; (c = *constraint) && c != ',' && c != '#';
4645 : 0 : constraint += CONSTRAINT_LEN (c, constraint))
4646 : : {
4647 : 0 : enum constraint_num cn = lookup_constraint (constraint);
4648 : 0 : if (insn_extra_memory_constraint (cn)
4649 : 0 : && (mem == NULL || constraint_satisfied_p (mem, cn)))
4650 : 0 : return true;
4651 : : }
4652 : : return false;
4653 : : }
4654 : :
4655 : : /* Scan X for memory references and scan the addresses for reloading.
4656 : : Also checks for references to "constant" regs that we want to eliminate
4657 : : and replaces them with the values they stand for.
4658 : : We may alter X destructively if it contains a reference to such.
4659 : : If X is just a constant reg, we return the equivalent value
4660 : : instead of X.
4661 : :
4662 : : IND_LEVELS says how many levels of indirect addressing this machine
4663 : : supports.
4664 : :
4665 : : OPNUM and TYPE identify the purpose of the reload.
4666 : :
4667 : : IS_SET_DEST is true if X is the destination of a SET, which is not
4668 : : appropriate to be replaced by a constant.
4669 : :
4670 : : INSN, if nonzero, is the insn in which we do the reload. It is used
4671 : : to determine if we may generate output reloads, and where to put USEs
4672 : : for pseudos that we have to replace with stack slots.
4673 : :
4674 : : ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4675 : : result of find_reloads_address. */
4676 : :
4677 : : static rtx
4678 : 0 : find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4679 : : int ind_levels, int is_set_dest, rtx_insn *insn,
4680 : : int *address_reloaded)
4681 : : {
4682 : 0 : RTX_CODE code = GET_CODE (x);
4683 : :
4684 : 0 : const char *fmt = GET_RTX_FORMAT (code);
4685 : 0 : int i;
4686 : 0 : int copied;
4687 : :
4688 : 0 : if (code == REG)
4689 : : {
4690 : : /* This code is duplicated for speed in find_reloads. */
4691 : 0 : int regno = REGNO (x);
4692 : 0 : if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4693 : 0 : x = reg_equiv_constant (regno);
4694 : : #if 0
4695 : : /* This creates (subreg (mem...)) which would cause an unnecessary
4696 : : reload of the mem. */
4697 : : else if (reg_equiv_mem (regno) != 0)
4698 : : x = reg_equiv_mem (regno);
4699 : : #endif
4700 : 0 : else if (reg_equiv_memory_loc (regno)
4701 : 0 : && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4702 : : {
4703 : 0 : rtx mem = make_memloc (x, regno);
4704 : 0 : if (reg_equiv_address (regno)
4705 : 0 : || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4706 : : {
4707 : : /* If this is not a toplevel operand, find_reloads doesn't see
4708 : : this substitution. We have to emit a USE of the pseudo so
4709 : : that delete_output_reload can see it. */
4710 : 0 : if (replace_reloads && recog_data.operand[opnum] != x)
4711 : : /* We mark the USE with QImode so that we recognize it
4712 : : as one that can be safely deleted at the end of
4713 : : reload. */
4714 : 0 : PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4715 : : QImode);
4716 : 0 : x = mem;
4717 : 0 : i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4718 : : opnum, type, ind_levels, insn);
4719 : 0 : if (!rtx_equal_p (x, mem))
4720 : 0 : push_reg_equiv_alt_mem (regno, x);
4721 : 0 : if (address_reloaded)
4722 : 0 : *address_reloaded = i;
4723 : : }
4724 : : }
4725 : 0 : return x;
4726 : : }
4727 : 0 : if (code == MEM)
4728 : : {
4729 : 0 : rtx tem = x;
4730 : :
4731 : 0 : i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4732 : : opnum, type, ind_levels, insn);
4733 : 0 : if (address_reloaded)
4734 : 0 : *address_reloaded = i;
4735 : :
4736 : 0 : return tem;
4737 : : }
4738 : :
4739 : 0 : if (code == SUBREG && REG_P (SUBREG_REG (x)))
4740 : : {
4741 : : /* Check for SUBREG containing a REG that's equivalent to a
4742 : : constant. If the constant has a known value, truncate it
4743 : : right now. Similarly if we are extracting a single-word of a
4744 : : multi-word constant. If the constant is symbolic, allow it
4745 : : to be substituted normally. push_reload will strip the
4746 : : subreg later. The constant must not be VOIDmode, because we
4747 : : will lose the mode of the register (this should never happen
4748 : : because one of the cases above should handle it). */
4749 : :
4750 : 0 : int regno = REGNO (SUBREG_REG (x));
4751 : 0 : rtx tem;
4752 : :
4753 : 0 : if (regno >= FIRST_PSEUDO_REGISTER
4754 : 0 : && reg_renumber[regno] < 0
4755 : 0 : && reg_equiv_constant (regno) != 0)
4756 : : {
4757 : 0 : tem =
4758 : 0 : simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4759 : 0 : GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4760 : 0 : gcc_assert (tem);
4761 : 0 : if (CONSTANT_P (tem)
4762 : 0 : && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4763 : : {
4764 : 0 : tem = force_const_mem (GET_MODE (x), tem);
4765 : 0 : i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4766 : : &XEXP (tem, 0), opnum, type,
4767 : : ind_levels, insn);
4768 : 0 : if (address_reloaded)
4769 : 0 : *address_reloaded = i;
4770 : : }
4771 : 0 : return tem;
4772 : : }
4773 : :
4774 : : /* If the subreg contains a reg that will be converted to a mem,
4775 : : attempt to convert the whole subreg to a (narrower or wider)
4776 : : memory reference instead. If this succeeds, we're done --
4777 : : otherwise fall through to check whether the inner reg still
4778 : : needs address reloads anyway. */
4779 : :
4780 : 0 : if (regno >= FIRST_PSEUDO_REGISTER
4781 : 0 : && reg_equiv_memory_loc (regno) != 0)
4782 : : {
4783 : 0 : tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4784 : : insn, address_reloaded);
4785 : 0 : if (tem)
4786 : : return tem;
4787 : : }
4788 : : }
4789 : :
4790 : 0 : for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4791 : : {
4792 : 0 : if (fmt[i] == 'e')
4793 : : {
4794 : 0 : rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4795 : : ind_levels, is_set_dest, insn,
4796 : : address_reloaded);
4797 : : /* If we have replaced a reg with it's equivalent memory loc -
4798 : : that can still be handled here e.g. if it's in a paradoxical
4799 : : subreg - we must make the change in a copy, rather than using
4800 : : a destructive change. This way, find_reloads can still elect
4801 : : not to do the change. */
4802 : 0 : if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4803 : : {
4804 : 0 : x = shallow_copy_rtx (x);
4805 : 0 : copied = 1;
4806 : : }
4807 : 0 : XEXP (x, i) = new_part;
4808 : : }
4809 : : }
4810 : 0 : return x;
4811 : : }
4812 : :
4813 : : /* Return a mem ref for the memory equivalent of reg REGNO.
4814 : : This mem ref is not shared with anything. */
4815 : :
4816 : : static rtx
4817 : 0 : make_memloc (rtx ad, int regno)
4818 : : {
4819 : : /* We must rerun eliminate_regs, in case the elimination
4820 : : offsets have changed. */
4821 : 0 : rtx tem
4822 : 0 : = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4823 : : 0);
4824 : :
4825 : : /* If TEM might contain a pseudo, we must copy it to avoid
4826 : : modifying it when we do the substitution for the reload. */
4827 : 0 : if (rtx_varies_p (tem, 0))
4828 : 0 : tem = copy_rtx (tem);
4829 : :
4830 : 0 : tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4831 : 0 : tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4832 : :
4833 : : /* Copy the result if it's still the same as the equivalence, to avoid
4834 : : modifying it when we do the substitution for the reload. */
4835 : 0 : if (tem == reg_equiv_memory_loc (regno))
4836 : 0 : tem = copy_rtx (tem);
4837 : 0 : return tem;
4838 : : }
4839 : :
4840 : : /* Returns true if AD could be turned into a valid memory reference
4841 : : to mode MODE in address space AS by reloading the part pointed to
4842 : : by PART into a register. */
4843 : :
4844 : : static bool
4845 : 0 : maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4846 : : addr_space_t as, rtx *part)
4847 : : {
4848 : 0 : bool retv;
4849 : 0 : rtx tem = *part;
4850 : 0 : rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4851 : :
4852 : 0 : *part = reg;
4853 : 0 : retv = memory_address_addr_space_p (mode, ad, as);
4854 : 0 : *part = tem;
4855 : :
4856 : 0 : return retv;
4857 : : }
4858 : :
4859 : : /* Record all reloads needed for handling memory address AD
4860 : : which appears in *LOC in a memory reference to mode MODE
4861 : : which itself is found in location *MEMREFLOC.
4862 : : Note that we take shortcuts assuming that no multi-reg machine mode
4863 : : occurs as part of an address.
4864 : :
4865 : : OPNUM and TYPE specify the purpose of this reload.
4866 : :
4867 : : IND_LEVELS says how many levels of indirect addressing this machine
4868 : : supports.
4869 : :
4870 : : INSN, if nonzero, is the insn in which we do the reload. It is used
4871 : : to determine if we may generate output reloads, and where to put USEs
4872 : : for pseudos that we have to replace with stack slots.
4873 : :
4874 : : Value is one if this address is reloaded or replaced as a whole; it is
4875 : : zero if the top level of this address was not reloaded or replaced, and
4876 : : it is -1 if it may or may not have been reloaded or replaced.
4877 : :
4878 : : Note that there is no verification that the address will be valid after
4879 : : this routine does its work. Instead, we rely on the fact that the address
4880 : : was valid when reload started. So we need only undo things that reload
4881 : : could have broken. These are wrong register types, pseudos not allocated
4882 : : to a hard register, and frame pointer elimination. */
4883 : :
4884 : : static int
4885 : 0 : find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4886 : : rtx *loc, int opnum, enum reload_type type,
4887 : : int ind_levels, rtx_insn *insn)
4888 : : {
4889 : 0 : addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4890 : 0 : : ADDR_SPACE_GENERIC;
4891 : 0 : int regno;
4892 : 0 : int removed_and = 0;
4893 : 0 : int op_index;
4894 : 0 : rtx tem;
4895 : :
4896 : : /* If the address is a register, see if it is a legitimate address and
4897 : : reload if not. We first handle the cases where we need not reload
4898 : : or where we must reload in a non-standard way. */
4899 : :
4900 : 0 : if (REG_P (ad))
4901 : : {
4902 : 0 : regno = REGNO (ad);
4903 : :
4904 : 0 : if (reg_equiv_constant (regno) != 0)
4905 : : {
4906 : 0 : find_reloads_address_part (reg_equiv_constant (regno), loc,
4907 : : base_reg_class (mode, as, MEM,
4908 : : SCRATCH, insn),
4909 : 0 : GET_MODE (ad), opnum, type, ind_levels);
4910 : 0 : return 1;
4911 : : }
4912 : :
4913 : 0 : tem = reg_equiv_memory_loc (regno);
4914 : 0 : if (tem != 0)
4915 : : {
4916 : 0 : if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4917 : : {
4918 : 0 : tem = make_memloc (ad, regno);
4919 : 0 : if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4920 : : XEXP (tem, 0),
4921 : 0 : MEM_ADDR_SPACE (tem)))
4922 : : {
4923 : 0 : rtx orig = tem;
4924 : :
4925 : 0 : find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4926 : : &XEXP (tem, 0), opnum,
4927 : 0 : ADDR_TYPE (type), ind_levels, insn);
4928 : 0 : if (!rtx_equal_p (tem, orig))
4929 : 0 : push_reg_equiv_alt_mem (regno, tem);
4930 : : }
4931 : : /* We can avoid a reload if the register's equivalent memory
4932 : : expression is valid as an indirect memory address.
4933 : : But not all addresses are valid in a mem used as an indirect
4934 : : address: only reg or reg+constant. */
4935 : :
4936 : 0 : if (ind_levels > 0
4937 : 0 : && strict_memory_address_addr_space_p (mode, tem, as)
4938 : 0 : && (REG_P (XEXP (tem, 0))
4939 : 0 : || (GET_CODE (XEXP (tem, 0)) == PLUS
4940 : 0 : && REG_P (XEXP (XEXP (tem, 0), 0))
4941 : 0 : && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4942 : : {
4943 : : /* TEM is not the same as what we'll be replacing the
4944 : : pseudo with after reload, put a USE in front of INSN
4945 : : in the final reload pass. */
4946 : 0 : if (replace_reloads
4947 : 0 : && num_not_at_initial_offset
4948 : 0 : && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4949 : : {
4950 : 0 : *loc = tem;
4951 : : /* We mark the USE with QImode so that we
4952 : : recognize it as one that can be safely
4953 : : deleted at the end of reload. */
4954 : 0 : PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4955 : : insn), QImode);
4956 : :
4957 : : /* This doesn't really count as replacing the address
4958 : : as a whole, since it is still a memory access. */
4959 : : }
4960 : 0 : return 0;
4961 : : }
4962 : 0 : ad = tem;
4963 : : }
4964 : : }
4965 : :
4966 : : /* The only remaining case where we can avoid a reload is if this is a
4967 : : hard register that is valid as a base register and which is not the
4968 : : subject of a CLOBBER in this insn. */
4969 : :
4970 : 0 : else if (regno < FIRST_PSEUDO_REGISTER
4971 : 0 : && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4972 : 0 : && ! regno_clobbered_p (regno, this_insn, mode, 0))
4973 : : return 0;
4974 : :
4975 : : /* If we do not have one of the cases above, we must do the reload. */
4976 : 0 : push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4977 : : base_reg_class (mode, as, MEM, SCRATCH, insn),
4978 : 0 : GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4979 : 0 : return 1;
4980 : : }
4981 : :
4982 : 0 : if (strict_memory_address_addr_space_p (mode, ad, as))
4983 : : {
4984 : : /* The address appears valid, so reloads are not needed.
4985 : : But the address may contain an eliminable register.
4986 : : This can happen because a machine with indirect addressing
4987 : : may consider a pseudo register by itself a valid address even when
4988 : : it has failed to get a hard reg.
4989 : : So do a tree-walk to find and eliminate all such regs. */
4990 : :
4991 : : /* But first quickly dispose of a common case. */
4992 : 0 : if (GET_CODE (ad) == PLUS
4993 : 0 : && CONST_INT_P (XEXP (ad, 1))
4994 : 0 : && REG_P (XEXP (ad, 0))
4995 : 0 : && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4996 : : return 0;
4997 : :
4998 : 0 : subst_reg_equivs_changed = 0;
4999 : 0 : *loc = subst_reg_equivs (ad, insn);
5000 : :
5001 : 0 : if (! subst_reg_equivs_changed)
5002 : : return 0;
5003 : :
5004 : : /* Check result for validity after substitution. */
5005 : 0 : if (strict_memory_address_addr_space_p (mode, ad, as))
5006 : : return 0;
5007 : : }
5008 : :
5009 : : #ifdef LEGITIMIZE_RELOAD_ADDRESS
5010 : : do
5011 : : {
5012 : : if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5013 : : {
5014 : : LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5015 : : ind_levels, win);
5016 : : }
5017 : : break;
5018 : : win:
5019 : : *memrefloc = copy_rtx (*memrefloc);
5020 : : XEXP (*memrefloc, 0) = ad;
5021 : : move_replacements (&ad, &XEXP (*memrefloc, 0));
5022 : : return -1;
5023 : : }
5024 : : while (0);
5025 : : #endif
5026 : :
5027 : : /* The address is not valid. We have to figure out why. First see if
5028 : : we have an outer AND and remove it if so. Then analyze what's inside. */
5029 : :
5030 : 0 : if (GET_CODE (ad) == AND)
5031 : : {
5032 : 0 : removed_and = 1;
5033 : 0 : loc = &XEXP (ad, 0);
5034 : 0 : ad = *loc;
5035 : : }
5036 : :
5037 : : /* One possibility for why the address is invalid is that it is itself
5038 : : a MEM. This can happen when the frame pointer is being eliminated, a
5039 : : pseudo is not allocated to a hard register, and the offset between the
5040 : : frame and stack pointers is not its initial value. In that case the
5041 : : pseudo will have been replaced by a MEM referring to the
5042 : : stack pointer. */
5043 : 0 : if (MEM_P (ad))
5044 : : {
5045 : : /* First ensure that the address in this MEM is valid. Then, unless
5046 : : indirect addresses are valid, reload the MEM into a register. */
5047 : 0 : tem = ad;
5048 : 0 : find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5049 : 0 : opnum, ADDR_TYPE (type),
5050 : : ind_levels == 0 ? 0 : ind_levels - 1, insn);
5051 : :
5052 : : /* If tem was changed, then we must create a new memory reference to
5053 : : hold it and store it back into memrefloc. */
5054 : 0 : if (tem != ad && memrefloc)
5055 : : {
5056 : 0 : *memrefloc = copy_rtx (*memrefloc);
5057 : 0 : copy_replacements (tem, XEXP (*memrefloc, 0));
5058 : 0 : loc = &XEXP (*memrefloc, 0);
5059 : 0 : if (removed_and)
5060 : 0 : loc = &XEXP (*loc, 0);
5061 : : }
5062 : :
5063 : : /* Check similar cases as for indirect addresses as above except
5064 : : that we can allow pseudos and a MEM since they should have been
5065 : : taken care of above. */
5066 : :
5067 : 0 : if (ind_levels == 0
5068 : 0 : || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5069 : 0 : || MEM_P (XEXP (tem, 0))
5070 : 0 : || ! (REG_P (XEXP (tem, 0))
5071 : : || (GET_CODE (XEXP (tem, 0)) == PLUS
5072 : 0 : && REG_P (XEXP (XEXP (tem, 0), 0))
5073 : 0 : && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5074 : : {
5075 : : /* Must use TEM here, not AD, since it is the one that will
5076 : : have any subexpressions reloaded, if needed. */
5077 : 0 : push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5078 : 0 : base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5079 : : VOIDmode, 0,
5080 : : 0, opnum, type);
5081 : 0 : return ! removed_and;
5082 : : }
5083 : : else
5084 : : return 0;
5085 : : }
5086 : :
5087 : : /* If we have address of a stack slot but it's not valid because the
5088 : : displacement is too large, compute the sum in a register.
5089 : : Handle all base registers here, not just fp/ap/sp, because on some
5090 : : targets (namely SH) we can also get too large displacements from
5091 : : big-endian corrections. */
5092 : 0 : else if (GET_CODE (ad) == PLUS
5093 : 0 : && REG_P (XEXP (ad, 0))
5094 : 0 : && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5095 : 0 : && CONST_INT_P (XEXP (ad, 1))
5096 : 0 : && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5097 : : CONST_INT)
5098 : : /* Similarly, if we were to reload the base register and the
5099 : : mem+offset address is still invalid, then we want to reload
5100 : : the whole address, not just the base register. */
5101 : 0 : || ! maybe_memory_address_addr_space_p
5102 : 0 : (mode, ad, as, &(XEXP (ad, 0)))))
5103 : :
5104 : : {
5105 : : /* Unshare the MEM rtx so we can safely alter it. */
5106 : 0 : if (memrefloc)
5107 : : {
5108 : 0 : *memrefloc = copy_rtx (*memrefloc);
5109 : 0 : loc = &XEXP (*memrefloc, 0);
5110 : 0 : if (removed_and)
5111 : 0 : loc = &XEXP (*loc, 0);
5112 : : }
5113 : :
5114 : 0 : if (double_reg_address_ok[mode]
5115 : 0 : && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5116 : : PLUS, CONST_INT))
5117 : : {
5118 : : /* Unshare the sum as well. */
5119 : 0 : *loc = ad = copy_rtx (ad);
5120 : :
5121 : : /* Reload the displacement into an index reg.
5122 : : We assume the frame pointer or arg pointer is a base reg. */
5123 : 0 : find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5124 : 0 : index_reg_class (insn), GET_MODE (ad), opnum,
5125 : : type, ind_levels);
5126 : 0 : return 0;
5127 : : }
5128 : : else
5129 : : {
5130 : : /* If the sum of two regs is not necessarily valid,
5131 : : reload the sum into a base reg.
5132 : : That will at least work. */
5133 : 0 : find_reloads_address_part (ad, loc,
5134 : : base_reg_class (mode, as, MEM,
5135 : : SCRATCH, insn),
5136 : 0 : GET_MODE (ad), opnum, type, ind_levels);
5137 : : }
5138 : 0 : return ! removed_and;
5139 : : }
5140 : :
5141 : : /* If we have an indexed stack slot, there are three possible reasons why
5142 : : it might be invalid: The index might need to be reloaded, the address
5143 : : might have been made by frame pointer elimination and hence have a
5144 : : constant out of range, or both reasons might apply.
5145 : :
5146 : : We can easily check for an index needing reload, but even if that is the
5147 : : case, we might also have an invalid constant. To avoid making the
5148 : : conservative assumption and requiring two reloads, we see if this address
5149 : : is valid when not interpreted strictly. If it is, the only problem is
5150 : : that the index needs a reload and find_reloads_address_1 will take care
5151 : : of it.
5152 : :
5153 : : Handle all base registers here, not just fp/ap/sp, because on some
5154 : : targets (namely SPARC) we can also get invalid addresses from preventive
5155 : : subreg big-endian corrections made by find_reloads_toplev. We
5156 : : can also get expressions involving LO_SUM (rather than PLUS) from
5157 : : find_reloads_subreg_address.
5158 : :
5159 : : If we decide to do something, it must be that `double_reg_address_ok'
5160 : : is true. We generate a reload of the base register + constant and
5161 : : rework the sum so that the reload register will be added to the index.
5162 : : This is safe because we know the address isn't shared.
5163 : :
5164 : : We check for the base register as both the first and second operand of
5165 : : the innermost PLUS and/or LO_SUM. */
5166 : :
5167 : 0 : for (op_index = 0; op_index < 2; ++op_index)
5168 : : {
5169 : 0 : rtx operand, addend;
5170 : 0 : enum rtx_code inner_code;
5171 : :
5172 : 0 : if (GET_CODE (ad) != PLUS)
5173 : 0 : continue;
5174 : :
5175 : 0 : inner_code = GET_CODE (XEXP (ad, 0));
5176 : 0 : if (!(GET_CODE (ad) == PLUS
5177 : 0 : && CONST_INT_P (XEXP (ad, 1))
5178 : 0 : && (inner_code == PLUS || inner_code == LO_SUM)))
5179 : 0 : continue;
5180 : :
5181 : 0 : operand = XEXP (XEXP (ad, 0), op_index);
5182 : 0 : if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5183 : 0 : continue;
5184 : :
5185 : 0 : addend = XEXP (XEXP (ad, 0), 1 - op_index);
5186 : :
5187 : 0 : if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5188 : 0 : GET_CODE (addend))
5189 : 0 : || operand == frame_pointer_rtx
5190 : 0 : || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
5191 : 0 : && operand == hard_frame_pointer_rtx)
5192 : 0 : || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5193 : 0 : && operand == arg_pointer_rtx)
5194 : 0 : || operand == stack_pointer_rtx)
5195 : 0 : && ! maybe_memory_address_addr_space_p
5196 : 0 : (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5197 : : {
5198 : 0 : rtx offset_reg;
5199 : 0 : enum reg_class cls;
5200 : :
5201 : 0 : offset_reg = plus_constant (GET_MODE (ad), operand,
5202 : 0 : INTVAL (XEXP (ad, 1)));
5203 : :
5204 : : /* Form the adjusted address. */
5205 : 0 : if (GET_CODE (XEXP (ad, 0)) == PLUS)
5206 : 0 : ad = gen_rtx_PLUS (GET_MODE (ad),
5207 : : op_index == 0 ? offset_reg : addend,
5208 : : op_index == 0 ? addend : offset_reg);
5209 : : else
5210 : 0 : ad = gen_rtx_LO_SUM (GET_MODE (ad),
5211 : : op_index == 0 ? offset_reg : addend,
5212 : : op_index == 0 ? addend : offset_reg);
5213 : 0 : *loc = ad;
5214 : :
5215 : 0 : cls = base_reg_class (mode, as, MEM, GET_CODE (addend), insn);
5216 : 0 : find_reloads_address_part (XEXP (ad, op_index),
5217 : : &XEXP (ad, op_index), cls,
5218 : 0 : GET_MODE (ad), opnum, type, ind_levels);
5219 : 0 : find_reloads_address_1 (mode, as,
5220 : 0 : XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5221 : 0 : GET_CODE (XEXP (ad, op_index)),
5222 : : &XEXP (ad, 1 - op_index), opnum,
5223 : : type, 0, insn);
5224 : :
5225 : 0 : return 0;
5226 : : }
5227 : : }
5228 : :
5229 : : /* See if address becomes valid when an eliminable register
5230 : : in a sum is replaced. */
5231 : :
5232 : 0 : tem = ad;
5233 : 0 : if (GET_CODE (ad) == PLUS)
5234 : 0 : tem = subst_indexed_address (ad);
5235 : 0 : if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5236 : : {
5237 : : /* Ok, we win that way. Replace any additional eliminable
5238 : : registers. */
5239 : :
5240 : 0 : subst_reg_equivs_changed = 0;
5241 : 0 : tem = subst_reg_equivs (tem, insn);
5242 : :
5243 : : /* Make sure that didn't make the address invalid again. */
5244 : :
5245 : 0 : if (! subst_reg_equivs_changed
5246 : 0 : || strict_memory_address_addr_space_p (mode, tem, as))
5247 : : {
5248 : 0 : *loc = tem;
5249 : 0 : return 0;
5250 : : }
5251 : : }
5252 : :
5253 : : /* If constants aren't valid addresses, reload the constant address
5254 : : into a register. */
5255 : 0 : if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5256 : : {
5257 : 0 : machine_mode address_mode = GET_MODE (ad);
5258 : 0 : if (address_mode == VOIDmode)
5259 : 0 : address_mode = targetm.addr_space.address_mode (as);
5260 : :
5261 : : /* If AD is an address in the constant pool, the MEM rtx may be shared.
5262 : : Unshare it so we can safely alter it. */
5263 : 0 : if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5264 : 0 : && CONSTANT_POOL_ADDRESS_P (ad))
5265 : : {
5266 : 0 : *memrefloc = copy_rtx (*memrefloc);
5267 : 0 : loc = &XEXP (*memrefloc, 0);
5268 : 0 : if (removed_and)
5269 : 0 : loc = &XEXP (*loc, 0);
5270 : : }
5271 : :
5272 : 0 : find_reloads_address_part (ad, loc,
5273 : : base_reg_class (mode, as, MEM,
5274 : : SCRATCH, insn),
5275 : : address_mode, opnum, type, ind_levels);
5276 : 0 : return ! removed_and;
5277 : : }
5278 : :
5279 : 0 : return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5280 : 0 : opnum, type, ind_levels, insn);
5281 : : }
5282 : :
5283 : : /* Find all pseudo regs appearing in AD
5284 : : that are eliminable in favor of equivalent values
5285 : : and do not have hard regs; replace them by their equivalents.
5286 : : INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5287 : : front of it for pseudos that we have to replace with stack slots. */
5288 : :
5289 : : static rtx
5290 : 0 : subst_reg_equivs (rtx ad, rtx_insn *insn)
5291 : : {
5292 : 0 : RTX_CODE code = GET_CODE (ad);
5293 : 0 : int i;
5294 : 0 : const char *fmt;
5295 : :
5296 : 0 : switch (code)
5297 : : {
5298 : : case HIGH:
5299 : : case CONST:
5300 : : CASE_CONST_ANY:
5301 : : case SYMBOL_REF:
5302 : : case LABEL_REF:
5303 : : case PC:
5304 : : return ad;
5305 : :
5306 : 0 : case REG:
5307 : 0 : {
5308 : 0 : int regno = REGNO (ad);
5309 : :
5310 : 0 : if (reg_equiv_constant (regno) != 0)
5311 : : {
5312 : 0 : subst_reg_equivs_changed = 1;
5313 : 0 : return reg_equiv_constant (regno);
5314 : : }
5315 : 0 : if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5316 : : {
5317 : 0 : rtx mem = make_memloc (ad, regno);
5318 : 0 : if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5319 : : {
5320 : 0 : subst_reg_equivs_changed = 1;
5321 : : /* We mark the USE with QImode so that we recognize it
5322 : : as one that can be safely deleted at the end of
5323 : : reload. */
5324 : 0 : PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5325 : : QImode);
5326 : 0 : return mem;
5327 : : }
5328 : : }
5329 : : }
5330 : : return ad;
5331 : :
5332 : 0 : case PLUS:
5333 : : /* Quickly dispose of a common case. */
5334 : 0 : if (XEXP (ad, 0) == frame_pointer_rtx
5335 : 0 : && CONST_INT_P (XEXP (ad, 1)))
5336 : : return ad;
5337 : : break;
5338 : :
5339 : : default:
5340 : : break;
5341 : : }
5342 : :
5343 : 0 : fmt = GET_RTX_FORMAT (code);
5344 : 0 : for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5345 : 0 : if (fmt[i] == 'e')
5346 : 0 : XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5347 : : return ad;
5348 : : }
5349 : :
5350 : : /* Compute the sum of X and Y, making canonicalizations assumed in an
5351 : : address, namely: sum constant integers, surround the sum of two
5352 : : constants with a CONST, put the constant as the second operand, and
5353 : : group the constant on the outermost sum.
5354 : :
5355 : : This routine assumes both inputs are already in canonical form. */
5356 : :
5357 : : rtx
5358 : 0 : form_sum (machine_mode mode, rtx x, rtx y)
5359 : : {
5360 : 0 : rtx tem;
5361 : :
5362 : 0 : gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5363 : 0 : gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5364 : :
5365 : 0 : if (CONST_INT_P (x))
5366 : 0 : return plus_constant (mode, y, INTVAL (x));
5367 : 0 : else if (CONST_INT_P (y))
5368 : 0 : return plus_constant (mode, x, INTVAL (y));
5369 : 0 : else if (CONSTANT_P (x))
5370 : 0 : tem = x, x = y, y = tem;
5371 : :
5372 : 0 : if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5373 : 0 : return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5374 : :
5375 : : /* Note that if the operands of Y are specified in the opposite
5376 : : order in the recursive calls below, infinite recursion will occur. */
5377 : 0 : if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5378 : 0 : return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5379 : :
5380 : : /* If both constant, encapsulate sum. Otherwise, just form sum. A
5381 : : constant will have been placed second. */
5382 : 0 : if (CONSTANT_P (x) && CONSTANT_P (y))
5383 : : {
5384 : 0 : if (GET_CODE (x) == CONST)
5385 : 0 : x = XEXP (x, 0);
5386 : 0 : if (GET_CODE (y) == CONST)
5387 : 0 : y = XEXP (y, 0);
5388 : :
5389 : 0 : return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5390 : : }
5391 : :
5392 : 0 : return gen_rtx_PLUS (mode, x, y);
5393 : : }
5394 : :
5395 : : /* If ADDR is a sum containing a pseudo register that should be
5396 : : replaced with a constant (from reg_equiv_constant),
5397 : : return the result of doing so, and also apply the associative
5398 : : law so that the result is more likely to be a valid address.
5399 : : (But it is not guaranteed to be one.)
5400 : :
5401 : : Note that at most one register is replaced, even if more are
5402 : : replaceable. Also, we try to put the result into a canonical form
5403 : : so it is more likely to be a valid address.
5404 : :
5405 : : In all other cases, return ADDR. */
5406 : :
5407 : : static rtx
5408 : 0 : subst_indexed_address (rtx addr)
5409 : : {
5410 : 0 : rtx op0 = 0, op1 = 0, op2 = 0;
5411 : 0 : rtx tem;
5412 : 0 : int regno;
5413 : :
5414 : 0 : if (GET_CODE (addr) == PLUS)
5415 : : {
5416 : : /* Try to find a register to replace. */
5417 : 0 : op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5418 : 0 : if (REG_P (op0)
5419 : 0 : && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5420 : 0 : && reg_renumber[regno] < 0
5421 : 0 : && reg_equiv_constant (regno) != 0)
5422 : : op0 = reg_equiv_constant (regno);
5423 : 0 : else if (REG_P (op1)
5424 : 0 : && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5425 : 0 : && reg_renumber[regno] < 0
5426 : 0 : && reg_equiv_constant (regno) != 0)
5427 : : op1 = reg_equiv_constant (regno);
5428 : 0 : else if (GET_CODE (op0) == PLUS
5429 : 0 : && (tem = subst_indexed_address (op0)) != op0)
5430 : : op0 = tem;
5431 : 0 : else if (GET_CODE (op1) == PLUS
5432 : 0 : && (tem = subst_indexed_address (op1)) != op1)
5433 : : op1 = tem;
5434 : : else
5435 : 0 : return addr;
5436 : :
5437 : : /* Pick out up to three things to add. */
5438 : 0 : if (GET_CODE (op1) == PLUS)
5439 : 0 : op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5440 : 0 : else if (GET_CODE (op0) == PLUS)
5441 : 0 : op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5442 : :
5443 : : /* Compute the sum. */
5444 : 0 : if (op2 != 0)
5445 : 0 : op1 = form_sum (GET_MODE (addr), op1, op2);
5446 : 0 : if (op1 != 0)
5447 : 0 : op0 = form_sum (GET_MODE (addr), op0, op1);
5448 : :
5449 : 0 : return op0;
5450 : : }
5451 : : return addr;
5452 : : }
5453 : :
5454 : : /* Update the REG_INC notes for an insn. It updates all REG_INC
5455 : : notes for the instruction which refer to REGNO the to refer
5456 : : to the reload number.
5457 : :
5458 : : INSN is the insn for which any REG_INC notes need updating.
5459 : :
5460 : : REGNO is the register number which has been reloaded.
5461 : :
5462 : : RELOADNUM is the reload number. */
5463 : :
5464 : : static void
5465 : 0 : update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5466 : : int reloadnum ATTRIBUTE_UNUSED)
5467 : : {
5468 : 0 : if (!AUTO_INC_DEC)
5469 : 0 : return;
5470 : :
5471 : : for (rtx link = REG_NOTES (insn); link; link = XEXP (link, 1))
5472 : : if (REG_NOTE_KIND (link) == REG_INC
5473 : : && (int) REGNO (XEXP (link, 0)) == regno)
5474 : : push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5475 : : }
5476 : :
5477 : : /* Record the pseudo registers we must reload into hard registers in a
5478 : : subexpression of a would-be memory address, X referring to a value
5479 : : in mode MODE. (This function is not called if the address we find
5480 : : is strictly valid.)
5481 : :
5482 : : CONTEXT = 1 means we are considering regs as index regs,
5483 : : = 0 means we are considering them as base regs.
5484 : : OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5485 : : or an autoinc code.
5486 : : If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5487 : : is the code of the index part of the address. Otherwise, pass SCRATCH
5488 : : for this argument.
5489 : : OPNUM and TYPE specify the purpose of any reloads made.
5490 : :
5491 : : IND_LEVELS says how many levels of indirect addressing are
5492 : : supported at this point in the address.
5493 : :
5494 : : INSN, if nonzero, is the insn in which we do the reload. It is used
5495 : : to determine if we may generate output reloads.
5496 : :
5497 : : We return nonzero if X, as a whole, is reloaded or replaced. */
5498 : :
5499 : : /* Note that we take shortcuts assuming that no multi-reg machine mode
5500 : : occurs as part of an address.
5501 : : Also, this is not fully machine-customizable; it works for machines
5502 : : such as VAXen and 68000's and 32000's, but other possible machines
5503 : : could have addressing modes that this does not handle right.
5504 : : If you add push_reload calls here, you need to make sure gen_reload
5505 : : handles those cases gracefully. */
5506 : :
5507 : : static int
5508 : 0 : find_reloads_address_1 (machine_mode mode, addr_space_t as,
5509 : : rtx x, int context,
5510 : : enum rtx_code outer_code, enum rtx_code index_code,
5511 : : rtx *loc, int opnum, enum reload_type type,
5512 : : int ind_levels, rtx_insn *insn)
5513 : : {
5514 : : #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5515 : : ((CONTEXT) == 0 \
5516 : : ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5517 : : : REGNO_OK_FOR_INDEX_P (REGNO))
5518 : :
5519 : 0 : enum reg_class context_reg_class;
5520 : 0 : RTX_CODE code = GET_CODE (x);
5521 : 0 : bool reloaded_inner_of_autoinc = false;
5522 : :
5523 : 0 : if (context == 1)
5524 : 0 : context_reg_class = index_reg_class (insn);
5525 : : else
5526 : 0 : context_reg_class = base_reg_class (mode, as, outer_code, index_code,
5527 : : insn);
5528 : :
5529 : 0 : switch (code)
5530 : : {
5531 : 0 : case PLUS:
5532 : 0 : {
5533 : 0 : rtx orig_op0 = XEXP (x, 0);
5534 : 0 : rtx orig_op1 = XEXP (x, 1);
5535 : 0 : RTX_CODE code0 = GET_CODE (orig_op0);
5536 : 0 : RTX_CODE code1 = GET_CODE (orig_op1);
5537 : 0 : rtx op0 = orig_op0;
5538 : 0 : rtx op1 = orig_op1;
5539 : :
5540 : 0 : if (GET_CODE (op0) == SUBREG)
5541 : : {
5542 : 0 : op0 = SUBREG_REG (op0);
5543 : 0 : code0 = GET_CODE (op0);
5544 : 0 : if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5545 : 0 : op0 = gen_rtx_REG (word_mode,
5546 : 0 : (REGNO (op0) +
5547 : 0 : subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5548 : 0 : GET_MODE (SUBREG_REG (orig_op0)),
5549 : 0 : SUBREG_BYTE (orig_op0),
5550 : 0 : GET_MODE (orig_op0))));
5551 : : }
5552 : :
5553 : 0 : if (GET_CODE (op1) == SUBREG)
5554 : : {
5555 : 0 : op1 = SUBREG_REG (op1);
5556 : 0 : code1 = GET_CODE (op1);
5557 : 0 : if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5558 : : /* ??? Why is this given op1's mode and above for
5559 : : ??? op0 SUBREGs we use word_mode? */
5560 : 0 : op1 = gen_rtx_REG (GET_MODE (op1),
5561 : 0 : (REGNO (op1) +
5562 : 0 : subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5563 : 0 : GET_MODE (SUBREG_REG (orig_op1)),
5564 : 0 : SUBREG_BYTE (orig_op1),
5565 : 0 : GET_MODE (orig_op1))));
5566 : : }
5567 : : /* Plus in the index register may be created only as a result of
5568 : : register rematerialization for expression like &localvar*4. Reload it.
5569 : : It may be possible to combine the displacement on the outer level,
5570 : : but it is probably not worthwhile to do so. */
5571 : 0 : if (context == 1)
5572 : : {
5573 : 0 : find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5574 : 0 : opnum, ADDR_TYPE (type), ind_levels, insn);
5575 : 0 : push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5576 : : context_reg_class,
5577 : 0 : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5578 : 0 : return 1;
5579 : : }
5580 : :
5581 : 0 : if (code0 == MULT || code0 == ASHIFT
5582 : : || code0 == SIGN_EXTEND || code0 == TRUNCATE
5583 : 0 : || code0 == ZERO_EXTEND || code1 == MEM)
5584 : : {
5585 : 0 : find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5586 : : &XEXP (x, 0), opnum, type, ind_levels,
5587 : : insn);
5588 : 0 : find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5589 : : &XEXP (x, 1), opnum, type, ind_levels,
5590 : : insn);
5591 : : }
5592 : :
5593 : 0 : else if (code1 == MULT || code1 == ASHIFT
5594 : : || code1 == SIGN_EXTEND || code1 == TRUNCATE
5595 : 0 : || code1 == ZERO_EXTEND || code0 == MEM)
5596 : : {
5597 : 0 : find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5598 : : &XEXP (x, 0), opnum, type, ind_levels,
5599 : : insn);
5600 : 0 : find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5601 : : &XEXP (x, 1), opnum, type, ind_levels,
5602 : : insn);
5603 : : }
5604 : :
5605 : 0 : else if (code0 == CONST_INT || code0 == CONST
5606 : : || code0 == SYMBOL_REF || code0 == LABEL_REF)
5607 : 0 : find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5608 : : &XEXP (x, 1), opnum, type, ind_levels,
5609 : : insn);
5610 : :
5611 : 0 : else if (code1 == CONST_INT || code1 == CONST
5612 : : || code1 == SYMBOL_REF || code1 == LABEL_REF)
5613 : 0 : find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5614 : : &XEXP (x, 0), opnum, type, ind_levels,
5615 : : insn);
5616 : :
5617 : 0 : else if (code0 == REG && code1 == REG)
5618 : : {
5619 : 0 : if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5620 : 0 : && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5621 : : return 0;
5622 : 0 : else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5623 : 0 : && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5624 : : return 0;
5625 : 0 : else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5626 : 0 : find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5627 : : &XEXP (x, 1), opnum, type, ind_levels,
5628 : : insn);
5629 : 0 : else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5630 : 0 : find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5631 : : &XEXP (x, 0), opnum, type, ind_levels,
5632 : : insn);
5633 : 0 : else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5634 : 0 : find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5635 : : &XEXP (x, 0), opnum, type, ind_levels,
5636 : : insn);
5637 : 0 : else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5638 : 0 : find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5639 : : &XEXP (x, 1), opnum, type, ind_levels,
5640 : : insn);
5641 : : else
5642 : : {
5643 : 0 : find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5644 : : &XEXP (x, 0), opnum, type, ind_levels,
5645 : : insn);
5646 : 0 : find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5647 : : &XEXP (x, 1), opnum, type, ind_levels,
5648 : : insn);
5649 : : }
5650 : : }
5651 : :
5652 : 0 : else if (code0 == REG)
5653 : : {
5654 : 0 : find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5655 : : &XEXP (x, 0), opnum, type, ind_levels,
5656 : : insn);
5657 : 0 : find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5658 : : &XEXP (x, 1), opnum, type, ind_levels,
5659 : : insn);
5660 : : }
5661 : :
5662 : 0 : else if (code1 == REG)
5663 : : {
5664 : 0 : find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5665 : : &XEXP (x, 1), opnum, type, ind_levels,
5666 : : insn);
5667 : 0 : find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5668 : : &XEXP (x, 0), opnum, type, ind_levels,
5669 : : insn);
5670 : : }
5671 : : }
5672 : :
5673 : : return 0;
5674 : :
5675 : 0 : case POST_MODIFY:
5676 : 0 : case PRE_MODIFY:
5677 : 0 : {
5678 : 0 : rtx op0 = XEXP (x, 0);
5679 : 0 : rtx op1 = XEXP (x, 1);
5680 : 0 : enum rtx_code index_code;
5681 : 0 : int regno;
5682 : 0 : int reloadnum;
5683 : :
5684 : 0 : if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5685 : : return 0;
5686 : :
5687 : : /* Currently, we only support {PRE,POST}_MODIFY constructs
5688 : : where a base register is {inc,dec}remented by the contents
5689 : : of another register or by a constant value. Thus, these
5690 : : operands must match. */
5691 : 0 : gcc_assert (op0 == XEXP (op1, 0));
5692 : :
5693 : : /* Require index register (or constant). Let's just handle the
5694 : : register case in the meantime... If the target allows
5695 : : auto-modify by a constant then we could try replacing a pseudo
5696 : : register with its equivalent constant where applicable.
5697 : :
5698 : : We also handle the case where the register was eliminated
5699 : : resulting in a PLUS subexpression.
5700 : :
5701 : : If we later decide to reload the whole PRE_MODIFY or
5702 : : POST_MODIFY, inc_for_reload might clobber the reload register
5703 : : before reading the index. The index register might therefore
5704 : : need to live longer than a TYPE reload normally would, so be
5705 : : conservative and class it as RELOAD_OTHER. */
5706 : 0 : if ((REG_P (XEXP (op1, 1))
5707 : 0 : && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5708 : 0 : || GET_CODE (XEXP (op1, 1)) == PLUS)
5709 : 0 : find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5710 : : &XEXP (op1, 1), opnum, RELOAD_OTHER,
5711 : : ind_levels, insn);
5712 : :
5713 : 0 : gcc_assert (REG_P (XEXP (op1, 0)));
5714 : :
5715 : 0 : regno = REGNO (XEXP (op1, 0));
5716 : 0 : index_code = GET_CODE (XEXP (op1, 1));
5717 : :
5718 : : /* A register that is incremented cannot be constant! */
5719 : 0 : gcc_assert (regno < FIRST_PSEUDO_REGISTER
5720 : : || reg_equiv_constant (regno) == 0);
5721 : :
5722 : : /* Handle a register that is equivalent to a memory location
5723 : : which cannot be addressed directly. */
5724 : 0 : if (reg_equiv_memory_loc (regno) != 0
5725 : 0 : && (reg_equiv_address (regno) != 0
5726 : 0 : || num_not_at_initial_offset))
5727 : : {
5728 : 0 : rtx tem = make_memloc (XEXP (x, 0), regno);
5729 : :
5730 : 0 : if (reg_equiv_address (regno)
5731 : 0 : || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5732 : : {
5733 : 0 : rtx orig = tem;
5734 : :
5735 : : /* First reload the memory location's address.
5736 : : We can't use ADDR_TYPE (type) here, because we need to
5737 : : write back the value after reading it, hence we actually
5738 : : need two registers. */
5739 : 0 : find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5740 : : &XEXP (tem, 0), opnum,
5741 : : RELOAD_OTHER,
5742 : : ind_levels, insn);
5743 : :
5744 : 0 : if (!rtx_equal_p (tem, orig))
5745 : 0 : push_reg_equiv_alt_mem (regno, tem);
5746 : :
5747 : : /* Then reload the memory location into a base
5748 : : register. */
5749 : 0 : reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5750 : : &XEXP (op1, 0),
5751 : : base_reg_class (mode, as,
5752 : : code, index_code,
5753 : : insn),
5754 : 0 : GET_MODE (x), GET_MODE (x), 0,
5755 : : 0, opnum, RELOAD_OTHER);
5756 : :
5757 : 0 : update_auto_inc_notes (this_insn, regno, reloadnum);
5758 : 0 : return 0;
5759 : : }
5760 : : }
5761 : :
5762 : 0 : if (reg_renumber[regno] >= 0)
5763 : 0 : regno = reg_renumber[regno];
5764 : :
5765 : : /* We require a base register here... */
5766 : 0 : if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5767 : : {
5768 : 0 : reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5769 : : &XEXP (op1, 0), &XEXP (x, 0),
5770 : : base_reg_class (mode, as,
5771 : : code, index_code,
5772 : : insn),
5773 : 0 : GET_MODE (x), GET_MODE (x), 0, 0,
5774 : : opnum, RELOAD_OTHER);
5775 : :
5776 : 0 : update_auto_inc_notes (this_insn, regno, reloadnum);
5777 : 0 : return 0;
5778 : : }
5779 : : }
5780 : : return 0;
5781 : :
5782 : 0 : case POST_INC:
5783 : 0 : case POST_DEC:
5784 : 0 : case PRE_INC:
5785 : 0 : case PRE_DEC:
5786 : 0 : if (REG_P (XEXP (x, 0)))
5787 : : {
5788 : 0 : int regno = REGNO (XEXP (x, 0));
5789 : 0 : int value = 0;
5790 : 0 : rtx x_orig = x;
5791 : :
5792 : : /* A register that is incremented cannot be constant! */
5793 : 0 : gcc_assert (regno < FIRST_PSEUDO_REGISTER
5794 : : || reg_equiv_constant (regno) == 0);
5795 : :
5796 : : /* Handle a register that is equivalent to a memory location
5797 : : which cannot be addressed directly. */
5798 : 0 : if (reg_equiv_memory_loc (regno) != 0
5799 : 0 : && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5800 : : {
5801 : 0 : rtx tem = make_memloc (XEXP (x, 0), regno);
5802 : 0 : if (reg_equiv_address (regno)
5803 : 0 : || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5804 : : {
5805 : 0 : rtx orig = tem;
5806 : :
5807 : : /* First reload the memory location's address.
5808 : : We can't use ADDR_TYPE (type) here, because we need to
5809 : : write back the value after reading it, hence we actually
5810 : : need two registers. */
5811 : 0 : find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5812 : : &XEXP (tem, 0), opnum, type,
5813 : : ind_levels, insn);
5814 : 0 : reloaded_inner_of_autoinc = true;
5815 : 0 : if (!rtx_equal_p (tem, orig))
5816 : 0 : push_reg_equiv_alt_mem (regno, tem);
5817 : : /* Put this inside a new increment-expression. */
5818 : 0 : x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5819 : : /* Proceed to reload that, as if it contained a register. */
5820 : : }
5821 : : }
5822 : :
5823 : : /* If we have a hard register that is ok in this incdec context,
5824 : : don't make a reload. If the register isn't nice enough for
5825 : : autoincdec, we can reload it. But, if an autoincrement of a
5826 : : register that we here verified as playing nice, still outside
5827 : : isn't "valid", it must be that no autoincrement is "valid".
5828 : : If that is true and something made an autoincrement anyway,
5829 : : this must be a special context where one is allowed.
5830 : : (For example, a "push" instruction.)
5831 : : We can't improve this address, so leave it alone. */
5832 : :
5833 : : /* Otherwise, reload the autoincrement into a suitable hard reg
5834 : : and record how much to increment by. */
5835 : :
5836 : 0 : if (reg_renumber[regno] >= 0)
5837 : 0 : regno = reg_renumber[regno];
5838 : 0 : if (regno >= FIRST_PSEUDO_REGISTER
5839 : 0 : || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5840 : : index_code))
5841 : : {
5842 : 0 : int reloadnum;
5843 : :
5844 : : /* If we can output the register afterwards, do so, this
5845 : : saves the extra update.
5846 : : We can do so if we have an INSN - i.e. no JUMP_INSN nor
5847 : : CALL_INSN.
5848 : : But don't do this if we cannot directly address the
5849 : : memory location, since this will make it harder to
5850 : : reuse address reloads, and increases register pressure.
5851 : : Also don't do this if we can probably update x directly. */
5852 : 0 : rtx equiv = (MEM_P (XEXP (x, 0))
5853 : 0 : ? XEXP (x, 0)
5854 : 0 : : reg_equiv_mem (regno));
5855 : 0 : enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5856 : 0 : if (insn && NONJUMP_INSN_P (insn)
5857 : 0 : && (regno < FIRST_PSEUDO_REGISTER
5858 : 0 : || (equiv
5859 : 0 : && memory_operand (equiv, GET_MODE (equiv))
5860 : 0 : && ! (icode != CODE_FOR_nothing
5861 : 0 : && insn_operand_matches (icode, 0, equiv)
5862 : 0 : && insn_operand_matches (icode, 1, equiv))))
5863 : : /* Using RELOAD_OTHER means we emit this and the reload we
5864 : : made earlier in the wrong order. */
5865 : 0 : && !reloaded_inner_of_autoinc)
5866 : : {
5867 : : /* We use the original pseudo for loc, so that
5868 : : emit_reload_insns() knows which pseudo this
5869 : : reload refers to and updates the pseudo rtx, not
5870 : : its equivalent memory location, as well as the
5871 : : corresponding entry in reg_last_reload_reg. */
5872 : 0 : loc = &XEXP (x_orig, 0);
5873 : 0 : x = XEXP (x, 0);
5874 : 0 : reloadnum
5875 : 0 : = push_reload (x, x, loc, loc,
5876 : : context_reg_class,
5877 : 0 : GET_MODE (x), GET_MODE (x), 0, 0,
5878 : : opnum, RELOAD_OTHER);
5879 : : }
5880 : : else
5881 : : {
5882 : 0 : reloadnum
5883 : 0 : = push_reload (x, x, loc, (rtx*) 0,
5884 : : context_reg_class,
5885 : 0 : GET_MODE (x), GET_MODE (x), 0, 0,
5886 : : opnum, type);
5887 : 0 : rld[reloadnum].inc
5888 : 0 : = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5889 : :
5890 : 0 : value = 1;
5891 : : }
5892 : :
5893 : 0 : update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5894 : : reloadnum);
5895 : : }
5896 : 0 : return value;
5897 : : }
5898 : : return 0;
5899 : :
5900 : 0 : case TRUNCATE:
5901 : 0 : case SIGN_EXTEND:
5902 : 0 : case ZERO_EXTEND:
5903 : : /* Look for parts to reload in the inner expression and reload them
5904 : : too, in addition to this operation. Reloading all inner parts in
5905 : : addition to this one shouldn't be necessary, but at this point,
5906 : : we don't know if we can possibly omit any part that *can* be
5907 : : reloaded. Targets that are better off reloading just either part
5908 : : (or perhaps even a different part of an outer expression), should
5909 : : define LEGITIMIZE_RELOAD_ADDRESS. */
5910 : 0 : find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5911 : : context, code, SCRATCH, &XEXP (x, 0), opnum,
5912 : : type, ind_levels, insn);
5913 : 0 : push_reload (x, NULL_RTX, loc, (rtx*) 0,
5914 : : context_reg_class,
5915 : 0 : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5916 : 0 : return 1;
5917 : :
5918 : 0 : case MEM:
5919 : : /* This is probably the result of a substitution, by eliminate_regs, of
5920 : : an equivalent address for a pseudo that was not allocated to a hard
5921 : : register. Verify that the specified address is valid and reload it
5922 : : into a register.
5923 : :
5924 : : Since we know we are going to reload this item, don't decrement for
5925 : : the indirection level.
5926 : :
5927 : : Note that this is actually conservative: it would be slightly more
5928 : : efficient to use the value of SPILL_INDIRECT_LEVELS from
5929 : : reload1.cc here. */
5930 : :
5931 : 0 : find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5932 : 0 : opnum, ADDR_TYPE (type), ind_levels, insn);
5933 : 0 : push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5934 : : context_reg_class,
5935 : 0 : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5936 : 0 : return 1;
5937 : :
5938 : 0 : case REG:
5939 : 0 : {
5940 : 0 : int regno = REGNO (x);
5941 : :
5942 : 0 : if (reg_equiv_constant (regno) != 0)
5943 : : {
5944 : 0 : find_reloads_address_part (reg_equiv_constant (regno), loc,
5945 : : context_reg_class,
5946 : 0 : GET_MODE (x), opnum, type, ind_levels);
5947 : 0 : return 1;
5948 : : }
5949 : :
5950 : : #if 0 /* This might screw code in reload1.cc to delete prior output-reload
5951 : : that feeds this insn. */
5952 : : if (reg_equiv_mem (regno) != 0)
5953 : : {
5954 : : push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5955 : : context_reg_class,
5956 : : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5957 : : return 1;
5958 : : }
5959 : : #endif
5960 : :
5961 : 0 : if (reg_equiv_memory_loc (regno)
5962 : 0 : && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5963 : : {
5964 : 0 : rtx tem = make_memloc (x, regno);
5965 : 0 : if (reg_equiv_address (regno) != 0
5966 : 0 : || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5967 : : {
5968 : 0 : x = tem;
5969 : 0 : find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5970 : 0 : &XEXP (x, 0), opnum, ADDR_TYPE (type),
5971 : : ind_levels, insn);
5972 : 0 : if (!rtx_equal_p (x, tem))
5973 : 0 : push_reg_equiv_alt_mem (regno, x);
5974 : : }
5975 : : }
5976 : :
5977 : 0 : if (reg_renumber[regno] >= 0)
5978 : 0 : regno = reg_renumber[regno];
5979 : :
5980 : 0 : if (regno >= FIRST_PSEUDO_REGISTER
5981 : 0 : || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5982 : : index_code))
5983 : : {
5984 : 0 : push_reload (x, NULL_RTX, loc, (rtx*) 0,
5985 : : context_reg_class,
5986 : 0 : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5987 : 0 : return 1;
5988 : : }
5989 : :
5990 : : /* If a register appearing in an address is the subject of a CLOBBER
5991 : : in this insn, reload it into some other register to be safe.
5992 : : The CLOBBER is supposed to make the register unavailable
5993 : : from before this insn to after it. */
5994 : 0 : if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5995 : : {
5996 : 0 : push_reload (x, NULL_RTX, loc, (rtx*) 0,
5997 : : context_reg_class,
5998 : 0 : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5999 : 0 : return 1;
6000 : : }
6001 : : }
6002 : : return 0;
6003 : :
6004 : 0 : case SUBREG:
6005 : 0 : if (REG_P (SUBREG_REG (x)))
6006 : : {
6007 : : /* If this is a SUBREG of a hard register and the resulting register
6008 : : is of the wrong class, reload the whole SUBREG. This avoids
6009 : : needless copies if SUBREG_REG is multi-word. */
6010 : 0 : if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6011 : : {
6012 : 0 : int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6013 : :
6014 : 0 : if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6015 : : index_code))
6016 : : {
6017 : 0 : push_reload (x, NULL_RTX, loc, (rtx*) 0,
6018 : : context_reg_class,
6019 : 0 : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6020 : 0 : return 1;
6021 : : }
6022 : : }
6023 : : /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6024 : : is larger than the class size, then reload the whole SUBREG. */
6025 : : else
6026 : : {
6027 : 0 : enum reg_class rclass = context_reg_class;
6028 : 0 : if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6029 : 0 : > reg_class_size[(int) rclass])
6030 : : {
6031 : : /* If the inner register will be replaced by a memory
6032 : : reference, we can do this only if we can replace the
6033 : : whole subreg by a (narrower) memory reference. If
6034 : : this is not possible, fall through and reload just
6035 : : the inner register (including address reloads). */
6036 : 0 : if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6037 : : {
6038 : 0 : rtx tem = find_reloads_subreg_address (x, opnum,
6039 : 0 : ADDR_TYPE (type),
6040 : : ind_levels, insn,
6041 : : NULL);
6042 : 0 : if (tem)
6043 : : {
6044 : 0 : push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6045 : 0 : GET_MODE (tem), VOIDmode, 0, 0,
6046 : : opnum, type);
6047 : 0 : return 1;
6048 : : }
6049 : : }
6050 : : else
6051 : : {
6052 : 0 : push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6053 : 0 : GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6054 : 0 : return 1;
6055 : : }
6056 : : }
6057 : : }
6058 : : }
6059 : : break;
6060 : :
6061 : : default:
6062 : : break;
6063 : : }
6064 : :
6065 : 0 : {
6066 : 0 : const char *fmt = GET_RTX_FORMAT (code);
6067 : 0 : int i;
6068 : :
6069 : 0 : for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6070 : : {
6071 : 0 : if (fmt[i] == 'e')
6072 : : /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6073 : : we get here. */
6074 : 0 : find_reloads_address_1 (mode, as, XEXP (x, i), context,
6075 : : code, SCRATCH, &XEXP (x, i),
6076 : : opnum, type, ind_levels, insn);
6077 : : }
6078 : : }
6079 : :
6080 : : #undef REG_OK_FOR_CONTEXT
6081 : : return 0;
6082 : : }
6083 : :
6084 : : /* X, which is found at *LOC, is a part of an address that needs to be
6085 : : reloaded into a register of class RCLASS. If X is a constant, or if
6086 : : X is a PLUS that contains a constant, check that the constant is a
6087 : : legitimate operand and that we are supposed to be able to load
6088 : : it into the register.
6089 : :
6090 : : If not, force the constant into memory and reload the MEM instead.
6091 : :
6092 : : MODE is the mode to use, in case X is an integer constant.
6093 : :
6094 : : OPNUM and TYPE describe the purpose of any reloads made.
6095 : :
6096 : : IND_LEVELS says how many levels of indirect addressing this machine
6097 : : supports. */
6098 : :
6099 : : static void
6100 : 0 : find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6101 : : machine_mode mode, int opnum,
6102 : : enum reload_type type, int ind_levels)
6103 : : {
6104 : 0 : if (CONSTANT_P (x)
6105 : 0 : && (!targetm.legitimate_constant_p (mode, x)
6106 : 0 : || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6107 : : {
6108 : 0 : x = force_const_mem (mode, x);
6109 : 0 : find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6110 : : opnum, type, ind_levels, 0);
6111 : : }
6112 : :
6113 : 0 : else if (GET_CODE (x) == PLUS
6114 : 0 : && CONSTANT_P (XEXP (x, 1))
6115 : 0 : && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6116 : 0 : || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6117 : : == NO_REGS))
6118 : : {
6119 : 0 : rtx tem;
6120 : :
6121 : 0 : tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6122 : 0 : x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6123 : 0 : find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6124 : : opnum, type, ind_levels, 0);
6125 : : }
6126 : :
6127 : 0 : push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6128 : : mode, VOIDmode, 0, 0, opnum, type);
6129 : 0 : }
6130 : :
6131 : : /* X, a subreg of a pseudo, is a part of an address that needs to be
6132 : : reloaded, and the pseusdo is equivalent to a memory location.
6133 : :
6134 : : Attempt to replace the whole subreg by a (possibly narrower or wider)
6135 : : memory reference. If this is possible, return this new memory
6136 : : reference, and push all required address reloads. Otherwise,
6137 : : return NULL.
6138 : :
6139 : : OPNUM and TYPE identify the purpose of the reload.
6140 : :
6141 : : IND_LEVELS says how many levels of indirect addressing are
6142 : : supported at this point in the address.
6143 : :
6144 : : INSN, if nonzero, is the insn in which we do the reload. It is used
6145 : : to determine where to put USEs for pseudos that we have to replace with
6146 : : stack slots. */
6147 : :
6148 : : static rtx
6149 : 0 : find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6150 : : int ind_levels, rtx_insn *insn,
6151 : : int *address_reloaded)
6152 : : {
6153 : 0 : machine_mode outer_mode = GET_MODE (x);
6154 : 0 : machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6155 : 0 : int regno = REGNO (SUBREG_REG (x));
6156 : 0 : int reloaded = 0;
6157 : 0 : rtx tem, orig;
6158 : 0 : poly_int64 offset;
6159 : :
6160 : 0 : gcc_assert (reg_equiv_memory_loc (regno) != 0);
6161 : :
6162 : : /* We cannot replace the subreg with a modified memory reference if:
6163 : :
6164 : : - we have a paradoxical subreg that implicitly acts as a zero or
6165 : : sign extension operation due to LOAD_EXTEND_OP;
6166 : :
6167 : : - we have a subreg that is implicitly supposed to act on the full
6168 : : register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6169 : :
6170 : : - the address of the equivalent memory location is mode-dependent; or
6171 : :
6172 : : - we have a paradoxical subreg and the resulting memory is not
6173 : : sufficiently aligned to allow access in the wider mode.
6174 : :
6175 : : In addition, we choose not to perform the replacement for *any*
6176 : : paradoxical subreg, even if it were possible in principle. This
6177 : : is to avoid generating wider memory references than necessary.
6178 : :
6179 : : This corresponds to how previous versions of reload used to handle
6180 : : paradoxical subregs where no address reload was required. */
6181 : :
6182 : 0 : if (paradoxical_subreg_p (x))
6183 : : return NULL;
6184 : :
6185 : 0 : if (WORD_REGISTER_OPERATIONS
6186 : : && partial_subreg_p (outer_mode, inner_mode)
6187 : : && known_equal_after_align_down (GET_MODE_SIZE (outer_mode) - 1,
6188 : : GET_MODE_SIZE (inner_mode) - 1,
6189 : : UNITS_PER_WORD))
6190 : : return NULL;
6191 : :
6192 : : /* Since we don't attempt to handle paradoxical subregs, we can just
6193 : : call into simplify_subreg, which will handle all remaining checks
6194 : : for us. */
6195 : 0 : orig = make_memloc (SUBREG_REG (x), regno);
6196 : 0 : offset = SUBREG_BYTE (x);
6197 : 0 : tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6198 : 0 : if (!tem || !MEM_P (tem))
6199 : : return NULL;
6200 : :
6201 : : /* Now push all required address reloads, if any. */
6202 : 0 : reloaded = find_reloads_address (GET_MODE (tem), &tem,
6203 : : XEXP (tem, 0), &XEXP (tem, 0),
6204 : : opnum, type, ind_levels, insn);
6205 : : /* ??? Do we need to handle nonzero offsets somehow? */
6206 : 0 : if (known_eq (offset, 0) && !rtx_equal_p (tem, orig))
6207 : 0 : push_reg_equiv_alt_mem (regno, tem);
6208 : :
6209 : : /* For some processors an address may be valid in the original mode but
6210 : : not in a smaller mode. For example, ARM accepts a scaled index register
6211 : : in SImode but not in HImode. Note that this is only a problem if the
6212 : : address in reg_equiv_mem is already invalid in the new mode; other
6213 : : cases would be fixed by find_reloads_address as usual.
6214 : :
6215 : : ??? We attempt to handle such cases here by doing an additional reload
6216 : : of the full address after the usual processing by find_reloads_address.
6217 : : Note that this may not work in the general case, but it seems to cover
6218 : : the cases where this situation currently occurs. A more general fix
6219 : : might be to reload the *value* instead of the address, but this would
6220 : : not be expected by the callers of this routine as-is.
6221 : :
6222 : : If find_reloads_address already completed replaced the address, there
6223 : : is nothing further to do. */
6224 : 0 : if (reloaded == 0
6225 : 0 : && reg_equiv_mem (regno) != 0
6226 : 0 : && !strict_memory_address_addr_space_p
6227 : 0 : (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6228 : 0 : MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6229 : : {
6230 : 0 : push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6231 : 0 : base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6232 : : MEM, SCRATCH, insn),
6233 : 0 : GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6234 : 0 : reloaded = 1;
6235 : : }
6236 : :
6237 : : /* If this is not a toplevel operand, find_reloads doesn't see this
6238 : : substitution. We have to emit a USE of the pseudo so that
6239 : : delete_output_reload can see it. */
6240 : 0 : if (replace_reloads && recog_data.operand[opnum] != x)
6241 : : /* We mark the USE with QImode so that we recognize it as one that
6242 : : can be safely deleted at the end of reload. */
6243 : 0 : PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6244 : : QImode);
6245 : :
6246 : 0 : if (address_reloaded)
6247 : 0 : *address_reloaded = reloaded;
6248 : :
6249 : 0 : return tem;
6250 : : }
6251 : :
6252 : : /* Substitute into the current INSN the registers into which we have reloaded
6253 : : the things that need reloading. The array `replacements'
6254 : : contains the locations of all pointers that must be changed
6255 : : and says what to replace them with.
6256 : :
6257 : : Return the rtx that X translates into; usually X, but modified. */
6258 : :
6259 : : void
6260 : 0 : subst_reloads (rtx_insn *insn)
6261 : : {
6262 : 0 : int i;
6263 : :
6264 : 0 : for (i = 0; i < n_replacements; i++)
6265 : : {
6266 : 0 : struct replacement *r = &replacements[i];
6267 : 0 : rtx reloadreg = rld[r->what].reg_rtx;
6268 : 0 : if (reloadreg)
6269 : : {
6270 : : #ifdef DEBUG_RELOAD
6271 : : /* This checking takes a very long time on some platforms
6272 : : causing the gcc.c-torture/compile/limits-fnargs.c test
6273 : : to time out during testing. See PR 31850.
6274 : :
6275 : : Internal consistency test. Check that we don't modify
6276 : : anything in the equivalence arrays. Whenever something from
6277 : : those arrays needs to be reloaded, it must be unshared before
6278 : : being substituted into; the equivalence must not be modified.
6279 : : Otherwise, if the equivalence is used after that, it will
6280 : : have been modified, and the thing substituted (probably a
6281 : : register) is likely overwritten and not a usable equivalence. */
6282 : : int check_regno;
6283 : :
6284 : : for (check_regno = 0; check_regno < max_regno; check_regno++)
6285 : : {
6286 : : #define CHECK_MODF(ARRAY) \
6287 : : gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6288 : : || !loc_mentioned_in_p (r->where, \
6289 : : (*reg_equivs)[check_regno].ARRAY))
6290 : :
6291 : : CHECK_MODF (constant);
6292 : : CHECK_MODF (memory_loc);
6293 : : CHECK_MODF (address);
6294 : : CHECK_MODF (mem);
6295 : : #undef CHECK_MODF
6296 : : }
6297 : : #endif /* DEBUG_RELOAD */
6298 : :
6299 : : /* If we're replacing a LABEL_REF with a register, there must
6300 : : already be an indication (to e.g. flow) which label this
6301 : : register refers to. */
6302 : 0 : gcc_assert (GET_CODE (*r->where) != LABEL_REF
6303 : : || !JUMP_P (insn)
6304 : : || find_reg_note (insn,
6305 : : REG_LABEL_OPERAND,
6306 : : XEXP (*r->where, 0))
6307 : : || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6308 : :
6309 : : /* Encapsulate RELOADREG so its machine mode matches what
6310 : : used to be there. Note that gen_lowpart_common will
6311 : : do the wrong thing if RELOADREG is multi-word. RELOADREG
6312 : : will always be a REG here. */
6313 : 0 : if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6314 : 0 : reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6315 : :
6316 : 0 : *r->where = reloadreg;
6317 : : }
6318 : : /* If reload got no reg and isn't optional, something's wrong. */
6319 : : else
6320 : 0 : gcc_assert (rld[r->what].optional);
6321 : : }
6322 : 0 : }
6323 : :
6324 : : /* Make a copy of any replacements being done into X and move those
6325 : : copies to locations in Y, a copy of X. */
6326 : :
6327 : : void
6328 : 0 : copy_replacements (rtx x, rtx y)
6329 : : {
6330 : 0 : copy_replacements_1 (&x, &y, n_replacements);
6331 : 0 : }
6332 : :
6333 : : static void
6334 : 0 : copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6335 : : {
6336 : 0 : int i, j;
6337 : 0 : rtx x, y;
6338 : 0 : struct replacement *r;
6339 : 0 : enum rtx_code code;
6340 : 0 : const char *fmt;
6341 : :
6342 : 0 : for (j = 0; j < orig_replacements; j++)
6343 : 0 : if (replacements[j].where == px)
6344 : : {
6345 : 0 : r = &replacements[n_replacements++];
6346 : 0 : r->where = py;
6347 : 0 : r->what = replacements[j].what;
6348 : 0 : r->mode = replacements[j].mode;
6349 : : }
6350 : :
6351 : 0 : x = *px;
6352 : 0 : y = *py;
6353 : 0 : code = GET_CODE (x);
6354 : 0 : fmt = GET_RTX_FORMAT (code);
6355 : :
6356 : 0 : for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6357 : : {
6358 : 0 : if (fmt[i] == 'e')
6359 : 0 : copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6360 : 0 : else if (fmt[i] == 'E')
6361 : 0 : for (j = XVECLEN (x, i); --j >= 0; )
6362 : 0 : copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6363 : : orig_replacements);
6364 : : }
6365 : 0 : }
6366 : :
6367 : : /* Change any replacements being done to *X to be done to *Y. */
6368 : :
6369 : : void
6370 : 0 : move_replacements (rtx *x, rtx *y)
6371 : : {
6372 : 0 : int i;
6373 : :
6374 : 0 : for (i = 0; i < n_replacements; i++)
6375 : 0 : if (replacements[i].where == x)
6376 : 0 : replacements[i].where = y;
6377 : 0 : }
6378 : :
6379 : : /* If LOC was scheduled to be replaced by something, return the replacement.
6380 : : Otherwise, return *LOC. */
6381 : :
6382 : : rtx
6383 : 0 : find_replacement (rtx *loc)
6384 : : {
6385 : 0 : struct replacement *r;
6386 : :
6387 : 0 : for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6388 : : {
6389 : 0 : rtx reloadreg = rld[r->what].reg_rtx;
6390 : :
6391 : 0 : if (reloadreg && r->where == loc)
6392 : : {
6393 : 0 : if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6394 : 0 : reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6395 : :
6396 : 0 : return reloadreg;
6397 : : }
6398 : 0 : else if (reloadreg && GET_CODE (*loc) == SUBREG
6399 : 0 : && r->where == &SUBREG_REG (*loc))
6400 : : {
6401 : 0 : if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6402 : 0 : reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6403 : :
6404 : 0 : return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6405 : 0 : GET_MODE (SUBREG_REG (*loc)),
6406 : 0 : SUBREG_BYTE (*loc));
6407 : : }
6408 : : }
6409 : :
6410 : : /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6411 : : what's inside and make a new rtl if so. */
6412 : 0 : if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6413 : 0 : || GET_CODE (*loc) == MULT)
6414 : : {
6415 : 0 : rtx x = find_replacement (&XEXP (*loc, 0));
6416 : 0 : rtx y = find_replacement (&XEXP (*loc, 1));
6417 : :
6418 : 0 : if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6419 : 0 : return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6420 : : }
6421 : :
6422 : 0 : return *loc;
6423 : : }
6424 : :
6425 : : /* Return nonzero if register in range [REGNO, ENDREGNO)
6426 : : appears either explicitly or implicitly in X
6427 : : other than being stored into (except for earlyclobber operands).
6428 : :
6429 : : References contained within the substructure at LOC do not count.
6430 : : LOC may be zero, meaning don't ignore anything.
6431 : :
6432 : : This is similar to refers_to_regno_p in rtlanal.cc except that we
6433 : : look at equivalences for pseudos that didn't get hard registers. */
6434 : :
6435 : : static int
6436 : 777053 : refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6437 : : rtx x, rtx *loc)
6438 : : {
6439 : 777053 : int i;
6440 : 777053 : unsigned int r;
6441 : 777053 : RTX_CODE code;
6442 : 777053 : const char *fmt;
6443 : :
6444 : 777053 : if (x == 0)
6445 : : return 0;
6446 : :
6447 : 777053 : repeat:
6448 : 1021746 : code = GET_CODE (x);
6449 : :
6450 : 1021746 : switch (code)
6451 : : {
6452 : 579577 : case REG:
6453 : 579577 : r = REGNO (x);
6454 : :
6455 : : /* If this is a pseudo, a hard register must not have been allocated.
6456 : : X must therefore either be a constant or be in memory. */
6457 : 579577 : if (r >= FIRST_PSEUDO_REGISTER)
6458 : : {
6459 : 0 : if (reg_equiv_memory_loc (r))
6460 : : return refers_to_regno_for_reload_p (regno, endregno,
6461 : : reg_equiv_memory_loc (r),
6462 : : (rtx*) 0);
6463 : :
6464 : 0 : gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6465 : : return 0;
6466 : : }
6467 : :
6468 : 1158184 : return endregno > r && regno < END_REGNO (x);
6469 : :
6470 : 0 : case SUBREG:
6471 : : /* If this is a SUBREG of a hard reg, we can see exactly which
6472 : : registers are being modified. Otherwise, handle normally. */
6473 : 0 : if (REG_P (SUBREG_REG (x))
6474 : 0 : && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6475 : : {
6476 : 0 : unsigned int inner_regno = subreg_regno (x);
6477 : 0 : unsigned int inner_endregno
6478 : : = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6479 : 0 : ? subreg_nregs (x) : 1);
6480 : :
6481 : 0 : return endregno > inner_regno && regno < inner_endregno;
6482 : : }
6483 : : break;
6484 : :
6485 : 0 : case CLOBBER:
6486 : 0 : case SET:
6487 : 0 : if (&SET_DEST (x) != loc
6488 : : /* Note setting a SUBREG counts as referring to the REG it is in for
6489 : : a pseudo but not for hard registers since we can
6490 : : treat each word individually. */
6491 : 0 : && ((GET_CODE (SET_DEST (x)) == SUBREG
6492 : 0 : && loc != &SUBREG_REG (SET_DEST (x))
6493 : 0 : && REG_P (SUBREG_REG (SET_DEST (x)))
6494 : 0 : && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6495 : 0 : && refers_to_regno_for_reload_p (regno, endregno,
6496 : : SUBREG_REG (SET_DEST (x)),
6497 : : loc))
6498 : : /* If the output is an earlyclobber operand, this is
6499 : : a conflict. */
6500 : 0 : || ((!REG_P (SET_DEST (x))
6501 : 0 : || earlyclobber_operand_p (SET_DEST (x)))
6502 : 0 : && refers_to_regno_for_reload_p (regno, endregno,
6503 : : SET_DEST (x), loc))))
6504 : 0 : return 1;
6505 : :
6506 : 0 : if (code == CLOBBER || loc == &SET_SRC (x))
6507 : : return 0;
6508 : 0 : x = SET_SRC (x);
6509 : 0 : goto repeat;
6510 : :
6511 : : default:
6512 : : break;
6513 : : }
6514 : :
6515 : : /* X does not match, so try its subexpressions. */
6516 : :
6517 : 442169 : fmt = GET_RTX_FORMAT (code);
6518 : 938153 : for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6519 : : {
6520 : 740677 : if (fmt[i] == 'e' && loc != &XEXP (x, i))
6521 : : {
6522 : 359276 : if (i == 0)
6523 : : {
6524 : 244693 : x = XEXP (x, 0);
6525 : 244693 : goto repeat;
6526 : : }
6527 : : else
6528 : 114583 : if (refers_to_regno_for_reload_p (regno, endregno,
6529 : : XEXP (x, i), loc))
6530 : : return 1;
6531 : : }
6532 : 381401 : else if (fmt[i] == 'E')
6533 : : {
6534 : 1389 : int j;
6535 : 19052 : for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6536 : 17663 : if (loc != &XVECEXP (x, i, j)
6537 : 17663 : && refers_to_regno_for_reload_p (regno, endregno,
6538 : : XVECEXP (x, i, j), loc))
6539 : : return 1;
6540 : : }
6541 : : }
6542 : : return 0;
6543 : : }
6544 : :
6545 : : /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6546 : : we check if any register number in X conflicts with the relevant register
6547 : : numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6548 : : contains a MEM (we don't bother checking for memory addresses that can't
6549 : : conflict because we expect this to be a rare case.
6550 : :
6551 : : This function is similar to reg_overlap_mentioned_p in rtlanal.cc except
6552 : : that we look at equivalences for pseudos that didn't get hard registers. */
6553 : :
6554 : : int
6555 : 0 : reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6556 : : {
6557 : 0 : int regno, endregno;
6558 : :
6559 : : /* Overly conservative. */
6560 : 0 : if (GET_CODE (x) == STRICT_LOW_PART
6561 : 0 : || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6562 : 0 : x = XEXP (x, 0);
6563 : :
6564 : : /* If either argument is a constant, then modifying X cannot affect IN. */
6565 : 0 : if (CONSTANT_P (x) || CONSTANT_P (in))
6566 : : return 0;
6567 : 0 : else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6568 : 0 : return refers_to_mem_for_reload_p (in);
6569 : 0 : else if (GET_CODE (x) == SUBREG)
6570 : : {
6571 : 0 : regno = REGNO (SUBREG_REG (x));
6572 : 0 : if (regno < FIRST_PSEUDO_REGISTER)
6573 : 0 : regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6574 : 0 : GET_MODE (SUBREG_REG (x)),
6575 : 0 : SUBREG_BYTE (x),
6576 : 0 : GET_MODE (x));
6577 : 0 : endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6578 : 0 : ? subreg_nregs (x) : 1);
6579 : :
6580 : 0 : return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6581 : : }
6582 : : else if (REG_P (x))
6583 : : {
6584 : 0 : regno = REGNO (x);
6585 : :
6586 : : /* If this is a pseudo, it must not have been assigned a hard register.
6587 : : Therefore, it must either be in memory or be a constant. */
6588 : :
6589 : 0 : if (regno >= FIRST_PSEUDO_REGISTER)
6590 : : {
6591 : 0 : if (reg_equiv_memory_loc (regno))
6592 : 0 : return refers_to_mem_for_reload_p (in);
6593 : 0 : gcc_assert (reg_equiv_constant (regno));
6594 : : return 0;
6595 : : }
6596 : :
6597 : 0 : endregno = END_REGNO (x);
6598 : :
6599 : 0 : return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6600 : : }
6601 : : else if (MEM_P (x))
6602 : 0 : return refers_to_mem_for_reload_p (in);
6603 : : else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC)
6604 : 0 : return reg_mentioned_p (x, in);
6605 : : else
6606 : : {
6607 : 0 : gcc_assert (GET_CODE (x) == PLUS);
6608 : :
6609 : : /* We actually want to know if X is mentioned somewhere inside IN.
6610 : : We must not say that (plus (sp) (const_int 124)) is in
6611 : : (plus (sp) (const_int 64)), since that can lead to incorrect reload
6612 : : allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6613 : : into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6614 : 0 : while (MEM_P (in))
6615 : 0 : in = XEXP (in, 0);
6616 : 0 : if (REG_P (in))
6617 : : return 0;
6618 : 0 : else if (GET_CODE (in) == PLUS)
6619 : 0 : return (rtx_equal_p (x, in)
6620 : 0 : || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6621 : 0 : || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6622 : : else
6623 : 0 : return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6624 : 0 : || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6625 : : }
6626 : : }
6627 : :
6628 : : /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6629 : : registers. */
6630 : :
6631 : : static int
6632 : 0 : refers_to_mem_for_reload_p (rtx x)
6633 : : {
6634 : 0 : const char *fmt;
6635 : 0 : int i;
6636 : :
6637 : 0 : if (MEM_P (x))
6638 : : return 1;
6639 : :
6640 : 0 : if (REG_P (x))
6641 : 0 : return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6642 : 0 : && reg_equiv_memory_loc (REGNO (x)));
6643 : :
6644 : 0 : fmt = GET_RTX_FORMAT (GET_CODE (x));
6645 : 0 : for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6646 : 0 : if (fmt[i] == 'e'
6647 : 0 : && (MEM_P (XEXP (x, i))
6648 : 0 : || refers_to_mem_for_reload_p (XEXP (x, i))))
6649 : 0 : return 1;
6650 : :
6651 : : return 0;
6652 : : }
6653 : :
6654 : : /* Check the insns before INSN to see if there is a suitable register
6655 : : containing the same value as GOAL.
6656 : : If OTHER is -1, look for a register in class RCLASS.
6657 : : Otherwise, just see if register number OTHER shares GOAL's value.
6658 : :
6659 : : Return an rtx for the register found, or zero if none is found.
6660 : :
6661 : : If RELOAD_REG_P is (short *)1,
6662 : : we reject any hard reg that appears in reload_reg_rtx
6663 : : because such a hard reg is also needed coming into this insn.
6664 : :
6665 : : If RELOAD_REG_P is any other nonzero value,
6666 : : it is a vector indexed by hard reg number
6667 : : and we reject any hard reg whose element in the vector is nonnegative
6668 : : as well as any that appears in reload_reg_rtx.
6669 : :
6670 : : If GOAL is zero, then GOALREG is a register number; we look
6671 : : for an equivalent for that register.
6672 : :
6673 : : MODE is the machine mode of the value we want an equivalence for.
6674 : : If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6675 : :
6676 : : This function is used by jump.cc as well as in the reload pass.
6677 : :
6678 : : If GOAL is the sum of the stack pointer and a constant, we treat it
6679 : : as if it were a constant except that sp is required to be unchanging. */
6680 : :
6681 : : rtx
6682 : 0 : find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6683 : : short *reload_reg_p, int goalreg, machine_mode mode)
6684 : : {
6685 : 0 : rtx_insn *p = insn;
6686 : 0 : rtx goaltry, valtry, value;
6687 : 0 : rtx_insn *where;
6688 : 0 : rtx pat;
6689 : 0 : int regno = -1;
6690 : 0 : int valueno;
6691 : 0 : int goal_mem = 0;
6692 : 0 : int goal_const = 0;
6693 : 0 : int goal_mem_addr_varies = 0;
6694 : 0 : int need_stable_sp = 0;
6695 : 0 : int nregs;
6696 : 0 : int valuenregs;
6697 : 0 : int num = 0;
6698 : :
6699 : 0 : if (goal == 0)
6700 : : regno = goalreg;
6701 : 0 : else if (REG_P (goal))
6702 : 0 : regno = REGNO (goal);
6703 : 0 : else if (MEM_P (goal))
6704 : : {
6705 : 0 : enum rtx_code code = GET_CODE (XEXP (goal, 0));
6706 : 0 : if (MEM_VOLATILE_P (goal))
6707 : : return 0;
6708 : 0 : if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6709 : : return 0;
6710 : : /* An address with side effects must be reexecuted. */
6711 : 0 : switch (code)
6712 : : {
6713 : : case POST_INC:
6714 : : case PRE_INC:
6715 : : case POST_DEC:
6716 : : case PRE_DEC:
6717 : : case POST_MODIFY:
6718 : : case PRE_MODIFY:
6719 : : return 0;
6720 : : default:
6721 : : break;
6722 : : }
6723 : : goal_mem = 1;
6724 : : }
6725 : 0 : else if (CONSTANT_P (goal))
6726 : : goal_const = 1;
6727 : 0 : else if (GET_CODE (goal) == PLUS
6728 : 0 : && XEXP (goal, 0) == stack_pointer_rtx
6729 : 0 : && CONSTANT_P (XEXP (goal, 1)))
6730 : : goal_const = need_stable_sp = 1;
6731 : 0 : else if (GET_CODE (goal) == PLUS
6732 : 0 : && XEXP (goal, 0) == frame_pointer_rtx
6733 : 0 : && CONSTANT_P (XEXP (goal, 1)))
6734 : : goal_const = 1;
6735 : : else
6736 : : return 0;
6737 : :
6738 : 0 : num = 0;
6739 : : /* Scan insns back from INSN, looking for one that copies
6740 : : a value into or out of GOAL.
6741 : : Stop and give up if we reach a label. */
6742 : :
6743 : 0 : while (1)
6744 : : {
6745 : 0 : p = PREV_INSN (p);
6746 : 0 : if (p && DEBUG_INSN_P (p))
6747 : 0 : continue;
6748 : 0 : num++;
6749 : 0 : if (p == 0 || LABEL_P (p)
6750 : 0 : || num > param_max_reload_search_insns)
6751 : : return 0;
6752 : :
6753 : : /* Don't reuse register contents from before a setjmp-type
6754 : : function call; on the second return (from the longjmp) it
6755 : : might have been clobbered by a later reuse. It doesn't
6756 : : seem worthwhile to actually go and see if it is actually
6757 : : reused even if that information would be readily available;
6758 : : just don't reuse it across the setjmp call. */
6759 : 0 : if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6760 : : return 0;
6761 : :
6762 : 0 : if (NONJUMP_INSN_P (p)
6763 : : /* If we don't want spill regs ... */
6764 : 0 : && (! (reload_reg_p != 0
6765 : : && reload_reg_p != (short *) HOST_WIDE_INT_1)
6766 : : /* ... then ignore insns introduced by reload; they aren't
6767 : : useful and can cause results in reload_as_needed to be
6768 : : different from what they were when calculating the need for
6769 : : spills. If we notice an input-reload insn here, we will
6770 : : reject it below, but it might hide a usable equivalent.
6771 : : That makes bad code. It may even fail: perhaps no reg was
6772 : : spilled for this insn because it was assumed we would find
6773 : : that equivalent. */
6774 : 0 : || INSN_UID (p) < reload_first_uid))
6775 : : {
6776 : 0 : rtx tem;
6777 : 0 : pat = single_set (p);
6778 : :
6779 : : /* First check for something that sets some reg equal to GOAL. */
6780 : 0 : if (pat != 0
6781 : 0 : && ((regno >= 0
6782 : 0 : && true_regnum (SET_SRC (pat)) == regno
6783 : 0 : && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6784 : : ||
6785 : : (regno >= 0
6786 : 0 : && true_regnum (SET_DEST (pat)) == regno
6787 : 0 : && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6788 : 0 : ||
6789 : 0 : (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6790 : : /* When looking for stack pointer + const,
6791 : : make sure we don't use a stack adjust. */
6792 : 0 : && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6793 : 0 : && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6794 : 0 : || (goal_mem
6795 : 0 : && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6796 : 0 : && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6797 : : || (goal_mem
6798 : 0 : && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6799 : 0 : && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6800 : : /* If we are looking for a constant,
6801 : : and something equivalent to that constant was copied
6802 : : into a reg, we can use that reg. */
6803 : 0 : || (goal_const && REG_NOTES (p) != 0
6804 : 0 : && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6805 : 0 : && ((rtx_equal_p (XEXP (tem, 0), goal)
6806 : 0 : && (valueno
6807 : 0 : = true_regnum (valtry = SET_DEST (pat))) >= 0)
6808 : 0 : || (REG_P (SET_DEST (pat))
6809 : 0 : && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6810 : 0 : && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6811 : 0 : && CONST_INT_P (goal)
6812 : 0 : && (goaltry = operand_subword (XEXP (tem, 0), 0,
6813 : : 0, VOIDmode)) != 0
6814 : 0 : && rtx_equal_p (goal, goaltry)
6815 : 0 : && (valtry
6816 : 0 : = operand_subword (SET_DEST (pat), 0, 0,
6817 : : VOIDmode))
6818 : 0 : && (valueno = true_regnum (valtry)) >= 0)))
6819 : 0 : || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6820 : : NULL_RTX))
6821 : 0 : && REG_P (SET_DEST (pat))
6822 : 0 : && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6823 : 0 : && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6824 : 0 : && CONST_INT_P (goal)
6825 : 0 : && (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6826 : : VOIDmode)) != 0
6827 : 0 : && rtx_equal_p (goal, goaltry)
6828 : 0 : && (valtry
6829 : 0 : = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6830 : 0 : && (valueno = true_regnum (valtry)) >= 0)))
6831 : : {
6832 : 0 : if (other >= 0)
6833 : : {
6834 : 0 : if (valueno != other)
6835 : 0 : continue;
6836 : : }
6837 : 0 : else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6838 : 0 : continue;
6839 : 0 : else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6840 : : mode, valueno))
6841 : 0 : continue;
6842 : 0 : value = valtry;
6843 : 0 : where = p;
6844 : 0 : break;
6845 : : }
6846 : : }
6847 : : }
6848 : :
6849 : : /* We found a previous insn copying GOAL into a suitable other reg VALUE
6850 : : (or copying VALUE into GOAL, if GOAL is also a register).
6851 : : Now verify that VALUE is really valid. */
6852 : :
6853 : : /* VALUENO is the register number of VALUE; a hard register. */
6854 : :
6855 : : /* Don't try to re-use something that is killed in this insn. We want
6856 : : to be able to trust REG_UNUSED notes. */
6857 : 0 : if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6858 : : return 0;
6859 : :
6860 : : /* If we propose to get the value from the stack pointer or if GOAL is
6861 : : a MEM based on the stack pointer, we need a stable SP. */
6862 : 0 : if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6863 : 0 : || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6864 : : goal)))
6865 : : need_stable_sp = 1;
6866 : :
6867 : : /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6868 : 0 : if (GET_MODE (value) != mode)
6869 : : return 0;
6870 : :
6871 : : /* Reject VALUE if it was loaded from GOAL
6872 : : and is also a register that appears in the address of GOAL. */
6873 : :
6874 : 0 : if (goal_mem && value == SET_DEST (single_set (where))
6875 : 0 : && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6876 : : goal, (rtx*) 0))
6877 : : return 0;
6878 : :
6879 : : /* Reject registers that overlap GOAL. */
6880 : :
6881 : 0 : if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6882 : 0 : nregs = hard_regno_nregs (regno, mode);
6883 : : else
6884 : : nregs = 1;
6885 : 0 : valuenregs = hard_regno_nregs (valueno, mode);
6886 : :
6887 : 0 : if (!goal_mem && !goal_const
6888 : 0 : && regno + nregs > valueno && regno < valueno + valuenregs)
6889 : : return 0;
6890 : :
6891 : : /* Reject VALUE if it is one of the regs reserved for reloads.
6892 : : Reload1 knows how to reuse them anyway, and it would get
6893 : : confused if we allocated one without its knowledge.
6894 : : (Now that insns introduced by reload are ignored above,
6895 : : this case shouldn't happen, but I'm not positive.) */
6896 : :
6897 : 0 : if (reload_reg_p != 0 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6898 : : {
6899 : : int i;
6900 : 0 : for (i = 0; i < valuenregs; ++i)
6901 : 0 : if (reload_reg_p[valueno + i] >= 0)
6902 : : return 0;
6903 : : }
6904 : :
6905 : : /* Reject VALUE if it is a register being used for an input reload
6906 : : even if it is not one of those reserved. */
6907 : :
6908 : 0 : if (reload_reg_p != 0)
6909 : : {
6910 : : int i;
6911 : 0 : for (i = 0; i < n_reloads; i++)
6912 : 0 : if (rld[i].reg_rtx != 0
6913 : 0 : && rld[i].in
6914 : 0 : && (int) REGNO (rld[i].reg_rtx) < valueno + valuenregs
6915 : 0 : && (int) END_REGNO (rld[i].reg_rtx) > valueno)
6916 : : return 0;
6917 : : }
6918 : :
6919 : 0 : if (goal_mem)
6920 : : /* We must treat frame pointer as varying here,
6921 : : since it can vary--in a nonlocal goto as generated by expand_goto. */
6922 : 0 : goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6923 : :
6924 : : /* Now verify that the values of GOAL and VALUE remain unaltered
6925 : : until INSN is reached. */
6926 : :
6927 : 0 : p = insn;
6928 : 0 : while (1)
6929 : : {
6930 : 0 : p = PREV_INSN (p);
6931 : 0 : if (p == where)
6932 : : return value;
6933 : :
6934 : : /* Don't trust the conversion past a function call
6935 : : if either of the two is in a call-clobbered register, or memory. */
6936 : 0 : if (CALL_P (p))
6937 : : {
6938 : 0 : if (goal_mem || need_stable_sp)
6939 : 0 : return 0;
6940 : :
6941 : 0 : function_abi callee_abi = insn_callee_abi (p);
6942 : 0 : if (regno >= 0
6943 : : && regno < FIRST_PSEUDO_REGISTER
6944 : 0 : && callee_abi.clobbers_reg_p (mode, regno))
6945 : : return 0;
6946 : :
6947 : 0 : if (valueno >= 0
6948 : : && valueno < FIRST_PSEUDO_REGISTER
6949 : 0 : && callee_abi.clobbers_reg_p (mode, valueno))
6950 : : return 0;
6951 : : }
6952 : :
6953 : 0 : if (INSN_P (p))
6954 : : {
6955 : 0 : pat = PATTERN (p);
6956 : :
6957 : : /* Watch out for unspec_volatile, and volatile asms. */
6958 : 0 : if (volatile_insn_p (pat))
6959 : : return 0;
6960 : :
6961 : : /* If this insn P stores in either GOAL or VALUE, return 0.
6962 : : If GOAL is a memory ref and this insn writes memory, return 0.
6963 : : If GOAL is a memory ref and its address is not constant,
6964 : : and this insn P changes a register used in GOAL, return 0. */
6965 : :
6966 : 0 : if (GET_CODE (pat) == COND_EXEC)
6967 : 0 : pat = COND_EXEC_CODE (pat);
6968 : 0 : if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6969 : : {
6970 : 0 : rtx dest = SET_DEST (pat);
6971 : 0 : while (GET_CODE (dest) == SUBREG
6972 : 0 : || GET_CODE (dest) == ZERO_EXTRACT
6973 : 0 : || GET_CODE (dest) == STRICT_LOW_PART)
6974 : 0 : dest = XEXP (dest, 0);
6975 : 0 : if (REG_P (dest))
6976 : : {
6977 : 0 : int xregno = REGNO (dest);
6978 : 0 : int end_xregno = END_REGNO (dest);
6979 : 0 : if (xregno < regno + nregs && end_xregno > regno)
6980 : : return 0;
6981 : 0 : if (xregno < valueno + valuenregs
6982 : 0 : && end_xregno > valueno)
6983 : : return 0;
6984 : 0 : if (goal_mem_addr_varies
6985 : 0 : && reg_overlap_mentioned_for_reload_p (dest, goal))
6986 : : return 0;
6987 : 0 : if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6988 : : return 0;
6989 : : }
6990 : 0 : else if (goal_mem && MEM_P (dest)
6991 : 0 : && ! push_operand (dest, GET_MODE (dest)))
6992 : : return 0;
6993 : 0 : else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6994 : 0 : && reg_equiv_memory_loc (regno) != 0)
6995 : : return 0;
6996 : 0 : else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6997 : : return 0;
6998 : : }
6999 : 0 : else if (GET_CODE (pat) == PARALLEL)
7000 : : {
7001 : 0 : int i;
7002 : 0 : for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7003 : : {
7004 : 0 : rtx v1 = XVECEXP (pat, 0, i);
7005 : 0 : if (GET_CODE (v1) == COND_EXEC)
7006 : 0 : v1 = COND_EXEC_CODE (v1);
7007 : 0 : if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7008 : : {
7009 : 0 : rtx dest = SET_DEST (v1);
7010 : 0 : while (GET_CODE (dest) == SUBREG
7011 : 0 : || GET_CODE (dest) == ZERO_EXTRACT
7012 : 0 : || GET_CODE (dest) == STRICT_LOW_PART)
7013 : 0 : dest = XEXP (dest, 0);
7014 : 0 : if (REG_P (dest))
7015 : : {
7016 : 0 : int xregno = REGNO (dest);
7017 : 0 : int end_xregno = END_REGNO (dest);
7018 : 0 : if (xregno < regno + nregs
7019 : 0 : && end_xregno > regno)
7020 : : return 0;
7021 : 0 : if (xregno < valueno + valuenregs
7022 : 0 : && end_xregno > valueno)
7023 : : return 0;
7024 : 0 : if (goal_mem_addr_varies
7025 : 0 : && reg_overlap_mentioned_for_reload_p (dest,
7026 : : goal))
7027 : : return 0;
7028 : 0 : if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7029 : : return 0;
7030 : : }
7031 : 0 : else if (goal_mem && MEM_P (dest)
7032 : 0 : && ! push_operand (dest, GET_MODE (dest)))
7033 : : return 0;
7034 : 0 : else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7035 : 0 : && reg_equiv_memory_loc (regno) != 0)
7036 : : return 0;
7037 : 0 : else if (need_stable_sp
7038 : 0 : && push_operand (dest, GET_MODE (dest)))
7039 : : return 0;
7040 : : }
7041 : : }
7042 : : }
7043 : :
7044 : 0 : if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7045 : : {
7046 : : rtx link;
7047 : :
7048 : 0 : for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7049 : 0 : link = XEXP (link, 1))
7050 : : {
7051 : 0 : pat = XEXP (link, 0);
7052 : 0 : if (GET_CODE (pat) == CLOBBER)
7053 : : {
7054 : 0 : rtx dest = SET_DEST (pat);
7055 : :
7056 : 0 : if (REG_P (dest))
7057 : : {
7058 : 0 : int xregno = REGNO (dest);
7059 : 0 : int end_xregno = END_REGNO (dest);
7060 : :
7061 : 0 : if (xregno < regno + nregs
7062 : 0 : && end_xregno > regno)
7063 : : return 0;
7064 : 0 : else if (xregno < valueno + valuenregs
7065 : 0 : && end_xregno > valueno)
7066 : : return 0;
7067 : 0 : else if (goal_mem_addr_varies
7068 : 0 : && reg_overlap_mentioned_for_reload_p (dest,
7069 : : goal))
7070 : : return 0;
7071 : : }
7072 : :
7073 : 0 : else if (goal_mem && MEM_P (dest)
7074 : 0 : && ! push_operand (dest, GET_MODE (dest)))
7075 : : return 0;
7076 : 0 : else if (need_stable_sp
7077 : 0 : && push_operand (dest, GET_MODE (dest)))
7078 : : return 0;
7079 : : }
7080 : : }
7081 : : }
7082 : :
7083 : : #if AUTO_INC_DEC
7084 : : /* If this insn auto-increments or auto-decrements
7085 : : either regno or valueno, return 0 now.
7086 : : If GOAL is a memory ref and its address is not constant,
7087 : : and this insn P increments a register used in GOAL, return 0. */
7088 : : {
7089 : : rtx link;
7090 : :
7091 : : for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7092 : : if (REG_NOTE_KIND (link) == REG_INC
7093 : : && REG_P (XEXP (link, 0)))
7094 : : {
7095 : : int incno = REGNO (XEXP (link, 0));
7096 : : if (incno < regno + nregs && incno >= regno)
7097 : : return 0;
7098 : : if (incno < valueno + valuenregs && incno >= valueno)
7099 : : return 0;
7100 : : if (goal_mem_addr_varies
7101 : : && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7102 : : goal))
7103 : : return 0;
7104 : : }
7105 : : }
7106 : : #endif
7107 : : }
7108 : : }
7109 : : }
7110 : :
7111 : : /* Find a place where INCED appears in an increment or decrement operator
7112 : : within X, and return the amount INCED is incremented or decremented by.
7113 : : The value is always positive. */
7114 : :
7115 : : static poly_int64
7116 : 0 : find_inc_amount (rtx x, rtx inced)
7117 : : {
7118 : 0 : enum rtx_code code = GET_CODE (x);
7119 : 0 : const char *fmt;
7120 : 0 : int i;
7121 : :
7122 : 0 : if (code == MEM)
7123 : : {
7124 : 0 : rtx addr = XEXP (x, 0);
7125 : 0 : if ((GET_CODE (addr) == PRE_DEC
7126 : 0 : || GET_CODE (addr) == POST_DEC
7127 : 0 : || GET_CODE (addr) == PRE_INC
7128 : 0 : || GET_CODE (addr) == POST_INC)
7129 : 0 : && XEXP (addr, 0) == inced)
7130 : 0 : return GET_MODE_SIZE (GET_MODE (x));
7131 : 0 : else if ((GET_CODE (addr) == PRE_MODIFY
7132 : 0 : || GET_CODE (addr) == POST_MODIFY)
7133 : 0 : && GET_CODE (XEXP (addr, 1)) == PLUS
7134 : 0 : && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7135 : 0 : && XEXP (addr, 0) == inced
7136 : 0 : && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7137 : : {
7138 : 0 : i = INTVAL (XEXP (XEXP (addr, 1), 1));
7139 : 0 : return i < 0 ? -i : i;
7140 : : }
7141 : : }
7142 : :
7143 : 0 : fmt = GET_RTX_FORMAT (code);
7144 : 0 : for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7145 : : {
7146 : 0 : if (fmt[i] == 'e')
7147 : : {
7148 : 0 : poly_int64 tem = find_inc_amount (XEXP (x, i), inced);
7149 : 0 : if (maybe_ne (tem, 0))
7150 : 0 : return tem;
7151 : : }
7152 : 0 : if (fmt[i] == 'E')
7153 : : {
7154 : 0 : int j;
7155 : 0 : for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7156 : : {
7157 : 0 : poly_int64 tem = find_inc_amount (XVECEXP (x, i, j), inced);
7158 : 0 : if (maybe_ne (tem, 0))
7159 : 0 : return tem;
7160 : : }
7161 : : }
7162 : : }
7163 : :
7164 : 0 : return 0;
7165 : : }
7166 : :
7167 : : /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7168 : : REG_INC note in insn INSN. REGNO must refer to a hard register. */
7169 : :
7170 : : static int
7171 : 0 : reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7172 : : rtx insn)
7173 : : {
7174 : 0 : rtx link;
7175 : :
7176 : 0 : if (!AUTO_INC_DEC)
7177 : 0 : return 0;
7178 : :
7179 : : gcc_assert (insn);
7180 : :
7181 : : if (! INSN_P (insn))
7182 : : return 0;
7183 : :
7184 : : for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7185 : : if (REG_NOTE_KIND (link) == REG_INC)
7186 : : {
7187 : : unsigned int test = (int) REGNO (XEXP (link, 0));
7188 : : if (test >= regno && test < endregno)
7189 : : return 1;
7190 : : }
7191 : : return 0;
7192 : : }
7193 : :
7194 : : /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7195 : : If SETS is 1, also consider SETs. If SETS is 2, enable checking
7196 : : REG_INC. REGNO must refer to a hard register. */
7197 : :
7198 : : int
7199 : 0 : regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7200 : : int sets)
7201 : : {
7202 : : /* regno must be a hard register. */
7203 : 0 : gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7204 : :
7205 : 0 : unsigned int endregno = end_hard_regno (mode, regno);
7206 : :
7207 : 0 : if ((GET_CODE (PATTERN (insn)) == CLOBBER
7208 : 0 : || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7209 : 0 : && REG_P (XEXP (PATTERN (insn), 0)))
7210 : : {
7211 : 0 : unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7212 : :
7213 : 0 : return test >= regno && test < endregno;
7214 : : }
7215 : :
7216 : 0 : if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7217 : : return 1;
7218 : :
7219 : 0 : if (GET_CODE (PATTERN (insn)) == PARALLEL)
7220 : : {
7221 : 0 : int i = XVECLEN (PATTERN (insn), 0) - 1;
7222 : :
7223 : 0 : for (; i >= 0; i--)
7224 : : {
7225 : 0 : rtx elt = XVECEXP (PATTERN (insn), 0, i);
7226 : 0 : if ((GET_CODE (elt) == CLOBBER
7227 : 0 : || (sets == 1 && GET_CODE (elt) == SET))
7228 : 0 : && REG_P (XEXP (elt, 0)))
7229 : : {
7230 : 0 : unsigned int test = REGNO (XEXP (elt, 0));
7231 : :
7232 : 0 : if (test >= regno && test < endregno)
7233 : : return 1;
7234 : : }
7235 : 0 : if (sets == 2
7236 : : && reg_inc_found_and_valid_p (regno, endregno, elt))
7237 : : return 1;
7238 : : }
7239 : : }
7240 : :
7241 : : return 0;
7242 : : }
7243 : :
7244 : : /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7245 : : rtx
7246 : 0 : reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7247 : : {
7248 : 0 : int regno;
7249 : :
7250 : 0 : if (GET_MODE (reloadreg) == mode)
7251 : : return reloadreg;
7252 : :
7253 : 0 : regno = REGNO (reloadreg);
7254 : :
7255 : 0 : if (REG_WORDS_BIG_ENDIAN)
7256 : : regno += ((int) REG_NREGS (reloadreg)
7257 : : - (int) hard_regno_nregs (regno, mode));
7258 : :
7259 : 0 : return gen_rtx_REG (mode, regno);
7260 : : }
7261 : :
7262 : : static const char *const reload_when_needed_name[] =
7263 : : {
7264 : : "RELOAD_FOR_INPUT",
7265 : : "RELOAD_FOR_OUTPUT",
7266 : : "RELOAD_FOR_INSN",
7267 : : "RELOAD_FOR_INPUT_ADDRESS",
7268 : : "RELOAD_FOR_INPADDR_ADDRESS",
7269 : : "RELOAD_FOR_OUTPUT_ADDRESS",
7270 : : "RELOAD_FOR_OUTADDR_ADDRESS",
7271 : : "RELOAD_FOR_OPERAND_ADDRESS",
7272 : : "RELOAD_FOR_OPADDR_ADDR",
7273 : : "RELOAD_OTHER",
7274 : : "RELOAD_FOR_OTHER_ADDRESS"
7275 : : };
7276 : :
7277 : : /* These functions are used to print the variables set by 'find_reloads' */
7278 : :
7279 : : DEBUG_FUNCTION void
7280 : 0 : debug_reload_to_stream (FILE *f)
7281 : : {
7282 : 0 : int r;
7283 : 0 : const char *prefix;
7284 : :
7285 : 0 : if (! f)
7286 : 0 : f = stderr;
7287 : 0 : for (r = 0; r < n_reloads; r++)
7288 : : {
7289 : 0 : fprintf (f, "Reload %d: ", r);
7290 : :
7291 : 0 : if (rld[r].in != 0)
7292 : : {
7293 : 0 : fprintf (f, "reload_in (%s) = ",
7294 : 0 : GET_MODE_NAME (rld[r].inmode));
7295 : 0 : print_inline_rtx (f, rld[r].in, 24);
7296 : 0 : fprintf (f, "\n\t");
7297 : : }
7298 : :
7299 : 0 : if (rld[r].out != 0)
7300 : : {
7301 : 0 : fprintf (f, "reload_out (%s) = ",
7302 : 0 : GET_MODE_NAME (rld[r].outmode));
7303 : 0 : print_inline_rtx (f, rld[r].out, 24);
7304 : 0 : fprintf (f, "\n\t");
7305 : : }
7306 : :
7307 : 0 : fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7308 : :
7309 : 0 : fprintf (f, "%s (opnum = %d)",
7310 : 0 : reload_when_needed_name[(int) rld[r].when_needed],
7311 : : rld[r].opnum);
7312 : :
7313 : 0 : if (rld[r].optional)
7314 : 0 : fprintf (f, ", optional");
7315 : :
7316 : 0 : if (rld[r].nongroup)
7317 : 0 : fprintf (f, ", nongroup");
7318 : :
7319 : 0 : if (maybe_ne (rld[r].inc, 0))
7320 : : {
7321 : 0 : fprintf (f, ", inc by ");
7322 : 0 : print_dec (rld[r].inc, f, SIGNED);
7323 : : }
7324 : :
7325 : 0 : if (rld[r].nocombine)
7326 : 0 : fprintf (f, ", can't combine");
7327 : :
7328 : 0 : if (rld[r].secondary_p)
7329 : 0 : fprintf (f, ", secondary_reload_p");
7330 : :
7331 : 0 : if (rld[r].in_reg != 0)
7332 : : {
7333 : 0 : fprintf (f, "\n\treload_in_reg: ");
7334 : 0 : print_inline_rtx (f, rld[r].in_reg, 24);
7335 : : }
7336 : :
7337 : 0 : if (rld[r].out_reg != 0)
7338 : : {
7339 : 0 : fprintf (f, "\n\treload_out_reg: ");
7340 : 0 : print_inline_rtx (f, rld[r].out_reg, 24);
7341 : : }
7342 : :
7343 : 0 : if (rld[r].reg_rtx != 0)
7344 : : {
7345 : 0 : fprintf (f, "\n\treload_reg_rtx: ");
7346 : 0 : print_inline_rtx (f, rld[r].reg_rtx, 24);
7347 : : }
7348 : :
7349 : 0 : prefix = "\n\t";
7350 : 0 : if (rld[r].secondary_in_reload != -1)
7351 : : {
7352 : 0 : fprintf (f, "%ssecondary_in_reload = %d",
7353 : : prefix, rld[r].secondary_in_reload);
7354 : 0 : prefix = ", ";
7355 : : }
7356 : :
7357 : 0 : if (rld[r].secondary_out_reload != -1)
7358 : 0 : fprintf (f, "%ssecondary_out_reload = %d\n",
7359 : : prefix, rld[r].secondary_out_reload);
7360 : :
7361 : 0 : prefix = "\n\t";
7362 : 0 : if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7363 : : {
7364 : 0 : fprintf (f, "%ssecondary_in_icode = %s", prefix,
7365 : 0 : insn_data[rld[r].secondary_in_icode].name);
7366 : 0 : prefix = ", ";
7367 : : }
7368 : :
7369 : 0 : if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7370 : 0 : fprintf (f, "%ssecondary_out_icode = %s", prefix,
7371 : 0 : insn_data[rld[r].secondary_out_icode].name);
7372 : :
7373 : 0 : fprintf (f, "\n");
7374 : : }
7375 : 0 : }
7376 : :
7377 : : DEBUG_FUNCTION void
7378 : 0 : debug_reload (void)
7379 : : {
7380 : 0 : debug_reload_to_stream (stderr);
7381 : 0 : }
|