Branch data Line data Source code
1 : : /* SSA Jump Threading
2 : : Copyright (C) 2005-2025 Free Software Foundation, Inc.
3 : : Contributed by Jeff Law <law@redhat.com>
4 : :
5 : : This file is part of GCC.
6 : :
7 : : GCC is free software; you can redistribute it and/or modify
8 : : it under the terms of the GNU General Public License as published by
9 : : the Free Software Foundation; either version 3, or (at your option)
10 : : any later version.
11 : :
12 : : GCC is distributed in the hope that it will be useful,
13 : : but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : : GNU General Public License for more details.
16 : :
17 : : You should have received a copy of the GNU General Public License
18 : : along with GCC; see the file COPYING3. If not see
19 : : <http://www.gnu.org/licenses/>. */
20 : :
21 : : #include "config.h"
22 : : #include "system.h"
23 : : #include "coretypes.h"
24 : : #include "backend.h"
25 : : #include "tree.h"
26 : : #include "gimple.h"
27 : : #include "predict.h"
28 : : #include "ssa.h"
29 : : #include "fold-const.h"
30 : : #include "cfgloop.h"
31 : : #include "gimple-iterator.h"
32 : : #include "tree-cfg.h"
33 : : #include "tree-ssa-threadupdate.h"
34 : : #include "tree-ssa-scopedtables.h"
35 : : #include "tree-ssa-threadedge.h"
36 : : #include "gimple-fold.h"
37 : : #include "cfganal.h"
38 : : #include "alloc-pool.h"
39 : : #include "vr-values.h"
40 : : #include "gimple-range.h"
41 : : #include "gimple-range-path.h"
42 : :
43 : : /* To avoid code explosion due to jump threading, we limit the
44 : : number of statements we are going to copy. This variable
45 : : holds the number of statements currently seen that we'll have
46 : : to copy as part of the jump threading process. */
47 : : static int stmt_count;
48 : :
49 : : /* Array to record value-handles per SSA_NAME. */
50 : : vec<tree> ssa_name_values;
51 : :
52 : : /* Set the value for the SSA name NAME to VALUE. */
53 : :
54 : : void
55 : 74476533 : set_ssa_name_value (tree name, tree value)
56 : : {
57 : 74476533 : if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
58 : 3532232 : ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1, true);
59 : 74476533 : if (value && TREE_OVERFLOW_P (value))
60 : 15 : value = drop_tree_overflow (value);
61 : 74476533 : ssa_name_values[SSA_NAME_VERSION (name)] = value;
62 : 74476533 : }
63 : :
64 : 2001910 : jump_threader::jump_threader (jt_simplifier *simplifier, jt_state *state)
65 : : {
66 : : /* Initialize the per SSA_NAME value-handles array. */
67 : 2001910 : gcc_assert (!ssa_name_values.exists ());
68 : 4003820 : ssa_name_values.create (num_ssa_names);
69 : :
70 : 2001910 : dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
71 : : integer_zero_node, NULL, NULL);
72 : :
73 : 2001910 : m_registry = new fwd_jt_path_registry ();
74 : 2001910 : m_simplifier = simplifier;
75 : 2001910 : m_state = state;
76 : 2001910 : }
77 : :
78 : 2001910 : jump_threader::~jump_threader (void)
79 : : {
80 : 2001910 : ssa_name_values.release ();
81 : 2001910 : ggc_free (dummy_cond);
82 : 2001910 : delete m_registry;
83 : 2001910 : }
84 : :
85 : : void
86 : 335916 : jump_threader::remove_jump_threads_including (edge_def *e)
87 : : {
88 : 335916 : m_registry->remove_jump_threads_including (e);
89 : 335916 : }
90 : :
91 : : bool
92 : 2001910 : jump_threader::thread_through_all_blocks (bool may_peel_loop_headers)
93 : : {
94 : 2001910 : return m_registry->thread_through_all_blocks (may_peel_loop_headers);
95 : : }
96 : :
97 : : static inline bool
98 : 16892881 : has_phis_p (basic_block bb)
99 : : {
100 : 6313233 : return !gsi_end_p (gsi_start_phis (bb));
101 : : }
102 : :
103 : : /* Return TRUE for a block with PHIs but no statements. */
104 : :
105 : : static bool
106 : 30388072 : empty_block_with_phis_p (basic_block bb)
107 : : {
108 : 36701305 : return gsi_end_p (gsi_start_nondebug_bb (bb)) && has_phis_p (bb);
109 : : }
110 : :
111 : : /* Return TRUE if we may be able to thread an incoming edge into
112 : : BB to an outgoing edge from BB. Return FALSE otherwise. */
113 : :
114 : : static bool
115 : 27510926 : potentially_threadable_block (basic_block bb)
116 : : {
117 : 27510926 : gimple_stmt_iterator gsi;
118 : :
119 : : /* Special case. We can get blocks that are forwarders, but are
120 : : not optimized away because they forward from outside a loop
121 : : to the loop header. We want to thread through them as we can
122 : : sometimes thread to the loop exit, which is obviously profitable.
123 : : The interesting case here is when the block has PHIs. */
124 : 27510926 : if (empty_block_with_phis_p (bb))
125 : : return true;
126 : :
127 : : /* If BB has a single successor or a single predecessor, then
128 : : there is no threading opportunity. */
129 : 26672346 : if (single_succ_p (bb) || single_pred_p (bb))
130 : : return false;
131 : :
132 : : /* If BB does not end with a conditional, switch or computed goto,
133 : : then there is no threading opportunity. */
134 : 7866248 : gsi = gsi_last_bb (bb);
135 : 7866248 : if (gsi_end_p (gsi)
136 : 7859961 : || ! gsi_stmt (gsi)
137 : 7866248 : || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
138 : 1914275 : && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
139 : 1913773 : && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
140 : 1898986 : return false;
141 : :
142 : : return true;
143 : : }
144 : :
145 : : /* Record temporary equivalences created by PHIs at the target of the
146 : : edge E.
147 : :
148 : : If a PHI which prevents threading is encountered, then return FALSE
149 : : indicating we should not thread this edge, else return TRUE. */
150 : :
151 : : bool
152 : 14771964 : jump_threader::record_temporary_equivalences_from_phis (edge e)
153 : : {
154 : 14771964 : gphi_iterator gsi;
155 : :
156 : : /* Each PHI creates a temporary equivalence, record them.
157 : : These are context sensitive equivalences and will be removed
158 : : later. */
159 : 31455925 : for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
160 : : {
161 : 16683961 : gphi *phi = gsi.phi ();
162 : 16683961 : tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
163 : 16683961 : tree dst = gimple_phi_result (phi);
164 : :
165 : : /* If the desired argument is not the same as this PHI's result
166 : : and it is set by a PHI in E->dest, then we cannot thread
167 : : through E->dest. */
168 : 16683961 : if (src != dst
169 : 16683961 : && TREE_CODE (src) == SSA_NAME
170 : 13544657 : && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
171 : 22614889 : && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
172 : : return false;
173 : :
174 : : /* We consider any non-virtual PHI as a statement since it
175 : : count result in a constant assignment or copy operation. */
176 : 33367922 : if (!virtual_operand_p (dst))
177 : 10098816 : stmt_count++;
178 : :
179 : 16683961 : m_state->register_equiv (dst, src, /*update_range=*/true);
180 : : }
181 : : return true;
182 : : }
183 : :
184 : : /* Valueize hook for gimple_fold_stmt_to_constant_1. */
185 : :
186 : : static tree
187 : 27567931 : threadedge_valueize (tree t)
188 : : {
189 : 27567931 : if (TREE_CODE (t) == SSA_NAME)
190 : : {
191 : 25083184 : tree tem = SSA_NAME_VALUE (t);
192 : 23802350 : if (tem)
193 : 6953819 : return tem;
194 : : }
195 : : return t;
196 : : }
197 : :
198 : : /* Try to simplify each statement in E->dest, ultimately leading to
199 : : a simplification of the COND_EXPR at the end of E->dest.
200 : :
201 : : Record unwind information for temporary equivalences onto STACK.
202 : :
203 : : Uses M_SIMPLIFIER to further simplify statements using pass specific
204 : : information.
205 : :
206 : : We might consider marking just those statements which ultimately
207 : : feed the COND_EXPR. It's not clear if the overhead of bookkeeping
208 : : would be recovered by trying to simplify fewer statements.
209 : :
210 : : If we are able to simplify a statement into the form
211 : : SSA_NAME = (SSA_NAME | gimple invariant), then we can record
212 : : a context sensitive equivalence which may help us simplify
213 : : later statements in E->dest. */
214 : :
215 : : gimple *
216 : 14771964 : jump_threader::record_temporary_equivalences_from_stmts_at_dest (edge e)
217 : : {
218 : 14771964 : gimple *stmt = NULL;
219 : 14771964 : gimple_stmt_iterator gsi;
220 : 14771964 : int max_stmt_count;
221 : :
222 : 14771964 : max_stmt_count = param_max_jump_thread_duplication_stmts;
223 : :
224 : : /* Walk through each statement in the block recording equivalences
225 : : we discover. Note any equivalences we discover are context
226 : : sensitive (ie, are dependent on traversing E) and must be unwound
227 : : when we're finished processing E. */
228 : 154181093 : for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
229 : : {
230 : 125824424 : stmt = gsi_stmt (gsi);
231 : :
232 : : /* Ignore empty statements and labels. */
233 : 125824424 : if (gimple_code (stmt) == GIMPLE_NOP
234 : 125824412 : || gimple_code (stmt) == GIMPLE_LABEL
235 : 251188417 : || is_gimple_debug (stmt))
236 : 80864813 : continue;
237 : :
238 : : /* If the statement has volatile operands, then we assume we
239 : : cannot thread through this block. This is overly
240 : : conservative in some ways. */
241 : 44959611 : if (gimple_code (stmt) == GIMPLE_ASM
242 : 44959611 : && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
243 : : return NULL;
244 : :
245 : : /* If the statement is a unique builtin, we cannot thread
246 : : through here. */
247 : 44948770 : if (gimple_code (stmt) == GIMPLE_CALL
248 : 4469777 : && gimple_call_internal_p (stmt)
249 : 45018735 : && gimple_call_internal_unique_p (stmt))
250 : : return NULL;
251 : :
252 : : /* We cannot thread through __builtin_constant_p, because an
253 : : expression that is constant on two threading paths may become
254 : : non-constant (i.e.: phi) when they merge. */
255 : 44948770 : if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P))
256 : : return NULL;
257 : :
258 : : /* If duplicating this block is going to cause too much code
259 : : expansion, then do not thread through this block. */
260 : 44948757 : stmt_count++;
261 : 44948757 : if (stmt_count > max_stmt_count)
262 : : {
263 : : /* If any of the stmts in the PATH's dests are going to be
264 : : killed due to threading, grow the max count
265 : : accordingly. */
266 : 2009222 : if (max_stmt_count
267 : 2009222 : == param_max_jump_thread_duplication_stmts)
268 : : {
269 : 1500717 : max_stmt_count += estimate_threading_killed_stmts (e->dest);
270 : 1500717 : if (dump_file)
271 : 41 : fprintf (dump_file, "threading bb %i up to %i stmts\n",
272 : 41 : e->dest->index, max_stmt_count);
273 : : }
274 : : /* If we're still past the limit, we're done. */
275 : 2009222 : if (stmt_count > max_stmt_count)
276 : : return NULL;
277 : : }
278 : :
279 : 43772352 : m_state->record_ranges_from_stmt (stmt, true);
280 : :
281 : : /* If this is not a statement that sets an SSA_NAME to a new
282 : : value, then do not try to simplify this statement as it will
283 : : not simplify in any way that is helpful for jump threading. */
284 : 43772352 : if ((gimple_code (stmt) != GIMPLE_ASSIGN
285 : 30645776 : || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
286 : 52017863 : && (gimple_code (stmt) != GIMPLE_CALL
287 : 4306311 : || gimple_call_lhs (stmt) == NULL_TREE
288 : 1943561 : || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
289 : 19795929 : continue;
290 : :
291 : : /* The result of __builtin_object_size depends on all the arguments
292 : : of a phi node. Temporarily using only one edge produces invalid
293 : : results. For example
294 : :
295 : : if (x < 6)
296 : : goto l;
297 : : else
298 : : goto l;
299 : :
300 : : l:
301 : : r = PHI <&w[2].a[1](2), &a.a[6](3)>
302 : : __builtin_object_size (r, 0)
303 : :
304 : : The result of __builtin_object_size is defined to be the maximum of
305 : : remaining bytes. If we use only one edge on the phi, the result will
306 : : change to be the remaining bytes for the corresponding phi argument.
307 : :
308 : : Similarly for __builtin_constant_p:
309 : :
310 : : r = PHI <1(2), 2(3)>
311 : : __builtin_constant_p (r)
312 : :
313 : : Both PHI arguments are constant, but x ? 1 : 2 is still not
314 : : constant. */
315 : :
316 : 23976423 : if (is_gimple_call (stmt))
317 : : {
318 : 1576158 : tree fndecl = gimple_call_fndecl (stmt);
319 : 1576158 : if (fndecl
320 : 1460629 : && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
321 : 1959635 : && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
322 : 383477 : || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
323 : 0 : continue;
324 : : }
325 : :
326 : 23976423 : m_state->register_equivs_stmt (stmt, e->src, m_simplifier);
327 : : }
328 : : return stmt;
329 : : }
330 : :
331 : : /* Simplify the control statement at the end of the block E->dest.
332 : :
333 : : Use SIMPLIFY (a pointer to a callback function) to further simplify
334 : : a condition using pass specific information.
335 : :
336 : : Return the simplified condition or NULL if simplification could
337 : : not be performed. When simplifying a GIMPLE_SWITCH, we may return
338 : : the CASE_LABEL_EXPR that will be taken. */
339 : :
340 : : tree
341 : 8554950 : jump_threader::simplify_control_stmt_condition (edge e, gimple *stmt)
342 : : {
343 : 8554950 : tree cond, cached_lhs;
344 : 8554950 : enum gimple_code code = gimple_code (stmt);
345 : :
346 : : /* For comparisons, we have to update both operands, then try
347 : : to simplify the comparison. */
348 : 8554950 : if (code == GIMPLE_COND)
349 : : {
350 : 8528553 : tree op0, op1;
351 : 8528553 : enum tree_code cond_code;
352 : :
353 : 8528553 : op0 = gimple_cond_lhs (stmt);
354 : 8528553 : op1 = gimple_cond_rhs (stmt);
355 : 8528553 : cond_code = gimple_cond_code (stmt);
356 : :
357 : : /* Get the current value of both operands. */
358 : 8528553 : if (TREE_CODE (op0) == SSA_NAME)
359 : : {
360 : 10148221 : for (int i = 0; i < 2; i++)
361 : : {
362 : 10146335 : if (TREE_CODE (op0) == SSA_NAME
363 : 10146335 : && SSA_NAME_VALUE (op0))
364 : 1840298 : op0 = SSA_NAME_VALUE (op0);
365 : : else
366 : : break;
367 : : }
368 : : }
369 : :
370 : 8528553 : if (TREE_CODE (op1) == SSA_NAME)
371 : : {
372 : 2928443 : for (int i = 0; i < 2; i++)
373 : : {
374 : 2927892 : if (TREE_CODE (op1) == SSA_NAME
375 : 2927892 : && SSA_NAME_VALUE (op1))
376 : 530170 : op1 = SSA_NAME_VALUE (op1);
377 : : else
378 : : break;
379 : : }
380 : : }
381 : :
382 : 8528553 : const unsigned recursion_limit = 4;
383 : :
384 : 8528553 : cached_lhs
385 : 8528553 : = simplify_control_stmt_condition_1 (e, stmt, op0, cond_code, op1,
386 : : recursion_limit);
387 : :
388 : : /* If we were testing an integer/pointer against a constant,
389 : : then we can trace the value of the SSA_NAME. If a value is
390 : : found, then the condition will collapse to a constant.
391 : :
392 : : Return the SSA_NAME we want to trace back rather than the full
393 : : expression and give the threader a chance to find its value. */
394 : 8528553 : if (cached_lhs == NULL)
395 : : {
396 : : /* Recover the original operands. They may have been simplified
397 : : using context sensitive equivalences. Those context sensitive
398 : : equivalences may not be valid on paths. */
399 : 7405463 : tree op0 = gimple_cond_lhs (stmt);
400 : 7405463 : tree op1 = gimple_cond_rhs (stmt);
401 : :
402 : 14679571 : if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
403 : 1734399 : || POINTER_TYPE_P (TREE_TYPE (op0)))
404 : 7241769 : && TREE_CODE (op0) == SSA_NAME
405 : 14475955 : && TREE_CODE (op1) == INTEGER_CST)
406 : : return op0;
407 : : }
408 : :
409 : 3594173 : return cached_lhs;
410 : : }
411 : :
412 : 26397 : if (code == GIMPLE_SWITCH)
413 : 26005 : cond = gimple_switch_index (as_a <gswitch *> (stmt));
414 : 392 : else if (code == GIMPLE_GOTO)
415 : 392 : cond = gimple_goto_dest (stmt);
416 : : else
417 : 0 : gcc_unreachable ();
418 : :
419 : : /* We can have conditionals which just test the state of a variable
420 : : rather than use a relational operator. These are simpler to handle. */
421 : 26397 : if (TREE_CODE (cond) == SSA_NAME)
422 : : {
423 : : tree original_lhs = cond;
424 : : cached_lhs = cond;
425 : :
426 : : /* Get the variable's current value from the equivalence chains.
427 : :
428 : : It is possible to get loops in the SSA_NAME_VALUE chains
429 : : (consider threading the backedge of a loop where we have
430 : : a loop invariant SSA_NAME used in the condition). */
431 : : if (cached_lhs)
432 : : {
433 : 33387 : for (int i = 0; i < 2; i++)
434 : : {
435 : 33387 : if (TREE_CODE (cached_lhs) == SSA_NAME
436 : 33387 : && SSA_NAME_VALUE (cached_lhs))
437 : 7008 : cached_lhs = SSA_NAME_VALUE (cached_lhs);
438 : : else
439 : : break;
440 : : }
441 : : }
442 : :
443 : : /* If we haven't simplified to an invariant yet, then use the
444 : : pass specific callback to try and simplify it further. */
445 : 26379 : if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
446 : : {
447 : 24393 : if (code == GIMPLE_SWITCH)
448 : : {
449 : : /* Replace the index operand of the GIMPLE_SWITCH with any LHS
450 : : we found before handing off to VRP. If simplification is
451 : : possible, the simplified value will be a CASE_LABEL_EXPR of
452 : : the label that is proven to be taken. */
453 : 24173 : gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
454 : 24173 : gimple_switch_set_index (dummy_switch, cached_lhs);
455 : 24173 : cached_lhs = m_simplifier->simplify (dummy_switch, stmt, e->src,
456 : : m_state);
457 : 24173 : ggc_free (dummy_switch);
458 : : }
459 : : else
460 : 220 : cached_lhs = m_simplifier->simplify (stmt, stmt, e->src, m_state);
461 : : }
462 : :
463 : : /* We couldn't find an invariant. But, callers of this
464 : : function may be able to do something useful with the
465 : : unmodified destination. */
466 : 26379 : if (!cached_lhs)
467 : 24285 : cached_lhs = original_lhs;
468 : : }
469 : : else
470 : : cached_lhs = NULL;
471 : :
472 : : return cached_lhs;
473 : : }
474 : :
475 : : /* Recursive helper for simplify_control_stmt_condition. */
476 : :
477 : : tree
478 : 8528553 : jump_threader::simplify_control_stmt_condition_1
479 : : (edge e,
480 : : gimple *stmt,
481 : : tree op0,
482 : : enum tree_code cond_code,
483 : : tree op1,
484 : : unsigned limit)
485 : : {
486 : 8528553 : if (limit == 0)
487 : : return NULL_TREE;
488 : :
489 : : /* We may need to canonicalize the comparison. For
490 : : example, op0 might be a constant while op1 is an
491 : : SSA_NAME. Failure to canonicalize will cause us to
492 : : miss threading opportunities. */
493 : 8528553 : if (tree_swap_operands_p (op0, op1))
494 : : {
495 : 407746 : cond_code = swap_tree_comparison (cond_code);
496 : 407746 : std::swap (op0, op1);
497 : : }
498 : :
499 : 8528553 : gimple_cond_set_code (dummy_cond, cond_code);
500 : 8528553 : gimple_cond_set_lhs (dummy_cond, op0);
501 : 8528553 : gimple_cond_set_rhs (dummy_cond, op1);
502 : :
503 : : /* We absolutely do not care about any type conversions
504 : : we only care about a zero/nonzero value. */
505 : 8528553 : fold_defer_overflow_warnings ();
506 : :
507 : 8528553 : tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
508 : 8528553 : if (res)
509 : 1617497 : while (CONVERT_EXPR_P (res))
510 : 742 : res = TREE_OPERAND (res, 0);
511 : :
512 : 8528553 : fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
513 : : stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
514 : :
515 : : /* If we have not simplified the condition down to an invariant,
516 : : then use the pass specific callback to simplify the condition. */
517 : 8528553 : if (!res
518 : 8528553 : || !is_gimple_min_invariant (res))
519 : 7669098 : res = m_simplifier->simplify (dummy_cond, stmt, e->src, m_state);
520 : :
521 : : return res;
522 : : }
523 : :
524 : : /* Copy debug stmts from DEST's chain of single predecessors up to
525 : : SRC, so that we don't lose the bindings as PHI nodes are introduced
526 : : when DEST gains new predecessors. */
527 : : void
528 : 1583179 : propagate_threaded_block_debug_into (basic_block dest, basic_block src)
529 : : {
530 : 1583179 : if (!MAY_HAVE_DEBUG_BIND_STMTS)
531 : 1037995 : return;
532 : :
533 : 1583179 : if (!single_pred_p (dest))
534 : : return;
535 : :
536 : 545184 : gcc_checking_assert (dest != src);
537 : :
538 : 545184 : gimple_stmt_iterator gsi = gsi_after_labels (dest);
539 : 545184 : int i = 0;
540 : 545184 : const int alloc_count = 16; // ?? Should this be a PARAM?
541 : :
542 : : /* Estimate the number of debug vars overridden in the beginning of
543 : : DEST, to tell how many we're going to need to begin with. */
544 : 545184 : for (gimple_stmt_iterator si = gsi;
545 : 2155150 : i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
546 : : {
547 : 2050121 : gimple *stmt = gsi_stmt (si);
548 : 2050121 : if (!is_gimple_debug (stmt))
549 : : break;
550 : 1609966 : if (gimple_debug_nonbind_marker_p (stmt))
551 : 324275 : continue;
552 : 1285691 : i++;
553 : : }
554 : :
555 : 545184 : auto_vec<tree, alloc_count> fewvars;
556 : 545184 : hash_set<tree> *vars = NULL;
557 : :
558 : : /* If we're already starting with 3/4 of alloc_count, go for a
559 : : hash_set, otherwise start with an unordered stack-allocated
560 : : VEC. */
561 : 545184 : if (i * 4 > alloc_count * 3)
562 : 43130 : vars = new hash_set<tree>;
563 : :
564 : : /* Now go through the initial debug stmts in DEST again, this time
565 : : actually inserting in VARS or FEWVARS. Don't bother checking for
566 : : duplicates in FEWVARS. */
567 : 2776003 : for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
568 : : {
569 : 2712089 : gimple *stmt = gsi_stmt (si);
570 : 2712089 : if (!is_gimple_debug (stmt))
571 : : break;
572 : :
573 : 2230819 : tree var;
574 : :
575 : 2230819 : if (gimple_debug_bind_p (stmt))
576 : 1829858 : var = gimple_debug_bind_get_var (stmt);
577 : 400961 : else if (gimple_debug_source_bind_p (stmt))
578 : 9037 : var = gimple_debug_source_bind_get_var (stmt);
579 : 391924 : else if (gimple_debug_nonbind_marker_p (stmt))
580 : 391924 : continue;
581 : : else
582 : 0 : gcc_unreachable ();
583 : :
584 : 1838895 : if (vars)
585 : 1113894 : vars->add (var);
586 : : else
587 : 725001 : fewvars.quick_push (var);
588 : : }
589 : :
590 : : basic_block bb = dest;
591 : :
592 : 559311 : do
593 : : {
594 : 559311 : bb = single_pred (bb);
595 : 559311 : for (gimple_stmt_iterator si = gsi_last_bb (bb);
596 : 11015319 : !gsi_end_p (si); gsi_prev (&si))
597 : : {
598 : 5228004 : gimple *stmt = gsi_stmt (si);
599 : 5228004 : if (!is_gimple_debug (stmt))
600 : 3815667 : continue;
601 : :
602 : 3952246 : tree var;
603 : :
604 : 3952246 : if (gimple_debug_bind_p (stmt))
605 : 3111517 : var = gimple_debug_bind_get_var (stmt);
606 : 840729 : else if (gimple_debug_source_bind_p (stmt))
607 : 15228 : var = gimple_debug_source_bind_get_var (stmt);
608 : 825501 : else if (gimple_debug_nonbind_marker_p (stmt))
609 : 825501 : continue;
610 : : else
611 : 0 : gcc_unreachable ();
612 : :
613 : : /* Discard debug bind overlaps. Unlike stmts from src,
614 : : copied into a new block that will precede BB, debug bind
615 : : stmts in bypassed BBs may actually be discarded if
616 : : they're overwritten by subsequent debug bind stmts. We
617 : : want to copy binds for all modified variables, so that we
618 : : retain a bind to the shared def if there is one, or to a
619 : : newly introduced PHI node if there is one. Our bind will
620 : : end up reset if the value is dead, but that implies the
621 : : variable couldn't have survived, so it's fine. We are
622 : : not actually running the code that performed the binds at
623 : : this point, we're just adding binds so that they survive
624 : : the new confluence, so markers should not be copied. */
625 : 3126745 : if (vars && vars->add (var))
626 : 1090372 : continue;
627 : 2036373 : else if (!vars)
628 : : {
629 : 1777345 : int i = fewvars.length ();
630 : 8984620 : while (i--)
631 : 7831311 : if (fewvars[i] == var)
632 : : break;
633 : 1777345 : if (i >= 0)
634 : 624036 : continue;
635 : 1153309 : else if (fewvars.length () < (unsigned) alloc_count)
636 : 1133147 : fewvars.quick_push (var);
637 : : else
638 : : {
639 : 20162 : vars = new hash_set<tree>;
640 : 362916 : for (i = 0; i < alloc_count; i++)
641 : 322592 : vars->add (fewvars[i]);
642 : 20162 : fewvars.release ();
643 : 20162 : vars->add (var);
644 : : }
645 : : }
646 : :
647 : 1412337 : stmt = gimple_copy (stmt);
648 : : /* ??? Should we drop the location of the copy to denote
649 : : they're artificial bindings? */
650 : 1412337 : gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
651 : : }
652 : : }
653 : 1127255 : while (bb != src && single_pred_p (bb));
654 : :
655 : 545184 : if (vars)
656 : 63292 : delete vars;
657 : 481892 : else if (fewvars.exists ())
658 : 481892 : fewvars.release ();
659 : 545184 : }
660 : :
661 : : /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
662 : : need not be duplicated as part of the CFG/SSA updating process).
663 : :
664 : : If it is threadable, add it to PATH and VISITED and recurse, ultimately
665 : : returning TRUE from the toplevel call. Otherwise do nothing and
666 : : return false. */
667 : :
668 : : bool
669 : 10206950 : jump_threader::thread_around_empty_blocks (vec<jump_thread_edge *> *path,
670 : : edge taken_edge,
671 : : bitmap visited, unsigned &limit)
672 : : {
673 : 10580460 : basic_block bb = taken_edge->dest;
674 : 10580460 : gimple_stmt_iterator gsi;
675 : 10580460 : gimple *stmt;
676 : 10580460 : tree cond;
677 : :
678 : 10580460 : if (limit == 0)
679 : : return false;
680 : 10579648 : --limit;
681 : :
682 : : /* The key property of these blocks is that they need not be duplicated
683 : : when threading. Thus they cannot have visible side effects such
684 : : as PHI nodes. */
685 : 10579648 : if (has_phis_p (bb))
686 : : return false;
687 : :
688 : : /* Skip over DEBUG statements at the start of the block. */
689 : 6673714 : gsi = gsi_start_nondebug_bb (bb);
690 : :
691 : : /* If the block has no statements, but does have a single successor, then
692 : : it's just a forwarding block and we can thread through it trivially.
693 : :
694 : : However, note that just threading through empty blocks with single
695 : : successors is not inherently profitable. For the jump thread to
696 : : be profitable, we must avoid a runtime conditional.
697 : :
698 : : By taking the return value from the recursive call, we get the
699 : : desired effect of returning TRUE when we found a profitable jump
700 : : threading opportunity and FALSE otherwise.
701 : :
702 : : This is particularly important when this routine is called after
703 : : processing a joiner block. Returning TRUE too aggressively in
704 : : that case results in pointless duplication of the joiner block. */
705 : 6673714 : if (gsi_end_p (gsi))
706 : : {
707 : 1547200 : if (single_succ_p (bb))
708 : : {
709 : 1547200 : taken_edge = single_succ_edge (bb);
710 : :
711 : 1547200 : if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
712 : : return false;
713 : :
714 : 373510 : if (!bitmap_bit_p (visited, taken_edge->dest->index))
715 : : {
716 : 373510 : m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
717 : 373510 : m_state->append_path (taken_edge->dest);
718 : 373510 : bitmap_set_bit (visited, taken_edge->dest->index);
719 : 373510 : return thread_around_empty_blocks (path, taken_edge, visited,
720 : 373510 : limit);
721 : : }
722 : : }
723 : :
724 : : /* We have a block with no statements, but multiple successors? */
725 : 0 : return false;
726 : : }
727 : :
728 : : /* The only real statements this block can have are a control
729 : : flow altering statement. Anything else stops the thread. */
730 : 5126514 : stmt = gsi_stmt (gsi);
731 : 5126514 : if (gimple_code (stmt) != GIMPLE_COND
732 : : && gimple_code (stmt) != GIMPLE_GOTO
733 : : && gimple_code (stmt) != GIMPLE_SWITCH)
734 : : return false;
735 : :
736 : : /* Extract and simplify the condition. */
737 : 424875 : cond = simplify_control_stmt_condition (taken_edge, stmt);
738 : :
739 : : /* If the condition can be statically computed and we have not already
740 : : visited the destination edge, then add the taken edge to our thread
741 : : path. */
742 : 424875 : if (cond != NULL_TREE
743 : 424875 : && (is_gimple_min_invariant (cond)
744 : 241675 : || TREE_CODE (cond) == CASE_LABEL_EXPR))
745 : : {
746 : 79245 : if (TREE_CODE (cond) == CASE_LABEL_EXPR)
747 : 23 : taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond)));
748 : : else
749 : 79222 : taken_edge = find_taken_edge (bb, cond);
750 : :
751 : 79245 : if (!taken_edge
752 : 79225 : || (taken_edge->flags & EDGE_DFS_BACK) != 0)
753 : : return false;
754 : :
755 : 79188 : if (bitmap_bit_p (visited, taken_edge->dest->index))
756 : : return false;
757 : 79188 : bitmap_set_bit (visited, taken_edge->dest->index);
758 : :
759 : 79188 : m_registry->push_edge (path, taken_edge, EDGE_NO_COPY_SRC_BLOCK);
760 : 79188 : m_state->append_path (taken_edge->dest);
761 : :
762 : 79188 : thread_around_empty_blocks (path, taken_edge, visited, limit);
763 : 79188 : return true;
764 : : }
765 : :
766 : : return false;
767 : : }
768 : :
769 : : /* We are exiting E->src, see if E->dest ends with a conditional
770 : : jump which has a known value when reached via E.
771 : :
772 : : E->dest can have arbitrary side effects which, if threading is
773 : : successful, will be maintained.
774 : :
775 : : Special care is necessary if E is a back edge in the CFG as we
776 : : may have already recorded equivalences for E->dest into our
777 : : various tables, including the result of the conditional at
778 : : the end of E->dest. Threading opportunities are severely
779 : : limited in that case to avoid short-circuiting the loop
780 : : incorrectly.
781 : :
782 : : Positive return value is success. Zero return value is failure, but
783 : : the block can still be duplicated as a joiner in a jump thread path,
784 : : negative indicates the block should not be duplicated and thus is not
785 : : suitable for a joiner in a jump threading path. */
786 : :
787 : : int
788 : 14772793 : jump_threader::thread_through_normal_block (vec<jump_thread_edge *> *path,
789 : : edge e, bitmap visited,
790 : : unsigned &limit)
791 : : {
792 : 14772793 : if (limit == 0)
793 : : return 0;
794 : 14771964 : limit--;
795 : :
796 : 14771964 : m_state->register_equivs_edge (e);
797 : :
798 : : /* PHIs create temporary equivalences.
799 : : Note that if we found a PHI that made the block non-threadable, then
800 : : we need to bubble that up to our caller in the same manner we do
801 : : when we prematurely stop processing statements below. */
802 : 14771964 : if (!record_temporary_equivalences_from_phis (e))
803 : : return -1;
804 : :
805 : : /* Now walk each statement recording any context sensitive
806 : : temporary equivalences we can detect. */
807 : 14771964 : gimple *stmt = record_temporary_equivalences_from_stmts_at_dest (e);
808 : :
809 : : /* There's two reasons STMT might be null, and distinguishing
810 : : between them is important.
811 : :
812 : : First the block may not have had any statements. For example, it
813 : : might have some PHIs and unconditionally transfer control elsewhere.
814 : : Such blocks are suitable for jump threading, particularly as a
815 : : joiner block.
816 : :
817 : : The second reason would be if we did not process all the statements
818 : : in the block (because there were too many to make duplicating the
819 : : block profitable. If we did not look at all the statements, then
820 : : we may not have invalidated everything needing invalidation. Thus
821 : : we must signal to our caller that this block is not suitable for
822 : : use as a joiner in a threading path. */
823 : 14771964 : if (!stmt)
824 : : {
825 : : /* First case. The statement simply doesn't have any instructions, but
826 : : does have PHIs. */
827 : 2877146 : if (empty_block_with_phis_p (e->dest))
828 : : return 0;
829 : :
830 : : /* Second case. */
831 : : return -1;
832 : : }
833 : :
834 : : /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
835 : : will be taken. */
836 : 11894818 : if (gimple_code (stmt) == GIMPLE_COND
837 : : || gimple_code (stmt) == GIMPLE_GOTO
838 : : || gimple_code (stmt) == GIMPLE_SWITCH)
839 : : {
840 : 8130075 : tree cond;
841 : :
842 : : /* Extract and simplify the condition. */
843 : 8130075 : cond = simplify_control_stmt_condition (e, stmt);
844 : :
845 : 8130075 : if (!cond)
846 : : return 0;
847 : :
848 : 5762952 : if (is_gimple_min_invariant (cond)
849 : 5762952 : || TREE_CODE (cond) == CASE_LABEL_EXPR)
850 : : {
851 : 1026719 : edge taken_edge;
852 : 1026719 : if (TREE_CODE (cond) == CASE_LABEL_EXPR)
853 : 85 : taken_edge = find_edge (e->dest,
854 : 85 : label_to_block (cfun, CASE_LABEL (cond)));
855 : : else
856 : 1026634 : taken_edge = find_taken_edge (e->dest, cond);
857 : :
858 : 1026719 : basic_block dest = (taken_edge ? taken_edge->dest : NULL);
859 : :
860 : : /* DEST could be NULL for a computed jump to an absolute
861 : : address. */
862 : 1026673 : if (dest == NULL
863 : 1026673 : || dest == e->dest
864 : 1026673 : || (taken_edge->flags & EDGE_DFS_BACK) != 0
865 : 2052958 : || bitmap_bit_p (visited, dest->index))
866 : 434 : return 0;
867 : :
868 : : /* Only push the EDGE_START_JUMP_THREAD marker if this is
869 : : first edge on the path. */
870 : 1026285 : if (path->length () == 0)
871 : 634006 : m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
872 : :
873 : 1026285 : m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_BLOCK);
874 : 1026285 : m_state->append_path (taken_edge->dest);
875 : :
876 : : /* See if we can thread through DEST as well, this helps capture
877 : : secondary effects of threading without having to re-run DOM or
878 : : VRP.
879 : :
880 : : We don't want to thread back to a block we have already
881 : : visited. This may be overly conservative. */
882 : 1026285 : bitmap_set_bit (visited, dest->index);
883 : 1026285 : bitmap_set_bit (visited, e->dest->index);
884 : 1026285 : thread_around_empty_blocks (path, taken_edge, visited, limit);
885 : 1026285 : return 1;
886 : : }
887 : : }
888 : : return 0;
889 : : }
890 : :
891 : : /* There are basic blocks look like:
892 : : <P0>
893 : : p0 = a CMP b ; or p0 = (INT) (a CMP b)
894 : : goto <X>;
895 : :
896 : : <P1>
897 : : p1 = c CMP d
898 : : goto <X>;
899 : :
900 : : <X>
901 : : # phi = PHI <p0 (P0), p1 (P1)>
902 : : if (phi != 0) goto <Y>; else goto <Z>;
903 : :
904 : : Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
905 : : And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK
906 : :
907 : : Return true if E is (P0,X) or (P1,X) */
908 : :
909 : : bool
910 : 8662379 : edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e)
911 : : {
912 : : /* See if there is only one stmt which is gcond. */
913 : 8662379 : gcond *gs;
914 : 9924218 : if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest))))
915 : : return false;
916 : :
917 : : /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block. */
918 : 1279592 : tree cond = gimple_cond_lhs (gs);
919 : 1279592 : enum tree_code code = gimple_cond_code (gs);
920 : 1279592 : tree rhs = gimple_cond_rhs (gs);
921 : 1279592 : if (TREE_CODE (cond) != SSA_NAME
922 : 1260512 : || (code != NE_EXPR && code != EQ_EXPR)
923 : 2116517 : || (!integer_onep (rhs) && !integer_zerop (rhs)))
924 : 717860 : return false;
925 : 561732 : gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond));
926 : 356615 : if (phi == NULL || gimple_bb (phi) != e->dest)
927 : : return false;
928 : :
929 : : /* Check if phi's incoming value is CMP. */
930 : 267933 : gassign *def;
931 : 267933 : tree value = PHI_ARG_DEF_FROM_EDGE (phi, e);
932 : 267933 : if (TREE_CODE (value) != SSA_NAME
933 : 267758 : || !has_single_use (value)
934 : 419043 : || !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value))))
935 : : return false;
936 : :
937 : : /* Or if it is (INT) (a CMP b). */
938 : 173487 : if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
939 : : {
940 : 26570 : value = gimple_assign_rhs1 (def);
941 : 26570 : if (TREE_CODE (value) != SSA_NAME
942 : 26570 : || !has_single_use (value)
943 : 8655227 : || !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value))))
944 : : return false;
945 : : }
946 : :
947 : 158861 : if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
948 : : return false;
949 : :
950 : : return true;
951 : : }
952 : :
953 : : /* We are exiting E->src, see if E->dest ends with a conditional jump
954 : : which has a known value when reached via E. If so, thread the
955 : : edge. */
956 : :
957 : : void
958 : 6805842 : jump_threader::thread_across_edge (edge e)
959 : : {
960 : 6805842 : auto_bitmap visited;
961 : :
962 : 6805842 : m_state->push (e);
963 : :
964 : 6805842 : stmt_count = 0;
965 : :
966 : 6805842 : vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
967 : 6805842 : bitmap_set_bit (visited, e->src->index);
968 : 6805842 : bitmap_set_bit (visited, e->dest->index);
969 : :
970 : : /* Limit search space. */
971 : 6805842 : unsigned limit = param_max_jump_thread_paths;
972 : :
973 : 6805842 : int threaded = 0;
974 : 6805842 : if ((e->flags & EDGE_DFS_BACK) == 0)
975 : 5718135 : threaded = thread_through_normal_block (path, e, visited, limit);
976 : :
977 : 5718135 : if (threaded > 0)
978 : : {
979 : 634006 : propagate_threaded_block_debug_into (path->last ()->e->dest,
980 : : e->dest);
981 : 634006 : m_registry->register_jump_thread (path);
982 : 634006 : m_state->pop ();
983 : 634006 : return;
984 : : }
985 : :
986 : 6171836 : gcc_checking_assert (path->length () == 0);
987 : 6171836 : path->release ();
988 : :
989 : 6171836 : if (threaded < 0)
990 : : {
991 : : /* The target block was deemed too big to duplicate. Just quit
992 : : now rather than trying to use the block as a joiner in a jump
993 : : threading path.
994 : :
995 : : This prevents unnecessary code growth, but more importantly if we
996 : : do not look at all the statements in the block, then we may have
997 : : missed some invalidations if we had traversed a backedge! */
998 : 155861 : m_state->pop ();
999 : 155861 : return;
1000 : : }
1001 : :
1002 : : /* We were unable to determine what out edge from E->dest is taken. However,
1003 : : we might still be able to thread through successors of E->dest. This
1004 : : often occurs when E->dest is a joiner block which then fans back out
1005 : : based on redundant tests.
1006 : :
1007 : : If so, we'll copy E->dest and redirect the appropriate predecessor to
1008 : : the copy. Within the copy of E->dest, we'll thread one or more edges
1009 : : to points deeper in the CFG.
1010 : :
1011 : : This is a stopgap until we have a more structured approach to path
1012 : : isolation. */
1013 : 6015975 : {
1014 : 6015975 : edge taken_edge;
1015 : 6015975 : edge_iterator ei;
1016 : 6015975 : bool found;
1017 : :
1018 : : /* If E->dest has abnormal outgoing edges, then there's no guarantee
1019 : : we can safely redirect any of the edges. Just punt those cases. */
1020 : 17341969 : FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1021 : 11326425 : if (taken_edge->flags & EDGE_COMPLEX)
1022 : : {
1023 : 431 : m_state->pop ();
1024 : 431 : return;
1025 : : }
1026 : :
1027 : : /* Look at each successor of E->dest to see if we can thread through it. */
1028 : 17341526 : FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1029 : : {
1030 : 11325982 : if ((e->flags & EDGE_DFS_BACK) != 0
1031 : 9161598 : || (taken_edge->flags & EDGE_DFS_BACK) != 0)
1032 : 2224505 : continue;
1033 : :
1034 : 9101477 : m_state->push (taken_edge);
1035 : :
1036 : : /* Avoid threading to any block we have already visited. */
1037 : 9101477 : bitmap_clear (visited);
1038 : 9101477 : bitmap_set_bit (visited, e->src->index);
1039 : 9101477 : bitmap_set_bit (visited, e->dest->index);
1040 : 9101477 : bitmap_set_bit (visited, taken_edge->dest->index);
1041 : :
1042 : 9101477 : vec<jump_thread_edge *> *path = m_registry->allocate_thread_path ();
1043 : 9101477 : m_registry->push_edge (path, e, EDGE_START_JUMP_THREAD);
1044 : 9101477 : m_registry->push_edge (path, taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1045 : :
1046 : 9101477 : found = thread_around_empty_blocks (path, taken_edge, visited, limit);
1047 : :
1048 : 9101477 : if (!found)
1049 : 9054658 : found = thread_through_normal_block (path,
1050 : 9054658 : path->last ()->e, visited,
1051 : : limit) > 0;
1052 : :
1053 : : /* If we were able to thread through a successor of E->dest, then
1054 : : record the jump threading opportunity. */
1055 : 9054658 : if (found
1056 : 9054658 : || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e))
1057 : : {
1058 : 483582 : if (taken_edge->dest != path->last ()->e->dest)
1059 : 439623 : propagate_threaded_block_debug_into (path->last ()->e->dest,
1060 : : taken_edge->dest);
1061 : 483582 : m_registry->register_jump_thread (path);
1062 : : }
1063 : : else
1064 : 8617895 : path->release ();
1065 : :
1066 : 9101477 : m_state->pop ();
1067 : : }
1068 : : }
1069 : :
1070 : 6015544 : m_state->pop ();
1071 : 6805842 : }
1072 : :
1073 : : /* Return TRUE if BB has a single successor to a block with multiple
1074 : : incoming and outgoing edges. */
1075 : :
1076 : : bool
1077 : 22236807 : single_succ_to_potentially_threadable_block (basic_block bb)
1078 : : {
1079 : 22236807 : int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1080 : 22236807 : return (single_succ_p (bb)
1081 : 11189838 : && (single_succ_edge (bb)->flags & flags) == 0
1082 : 32900717 : && potentially_threadable_block (single_succ (bb)));
1083 : : }
1084 : :
1085 : : /* Examine the outgoing edges from BB and conditionally
1086 : : try to thread them. */
1087 : :
1088 : : void
1089 : 22238314 : jump_threader::thread_outgoing_edges (basic_block bb)
1090 : : {
1091 : 22238314 : int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1092 : :
1093 : 22238314 : if (!flag_thread_jumps)
1094 : : return;
1095 : :
1096 : : /* If we have an outgoing edge to a block with multiple incoming and
1097 : : outgoing edges, then we may be able to thread the edge, i.e., we
1098 : : may be able to statically determine which of the outgoing edges
1099 : : will be traversed when the incoming edge from BB is traversed. */
1100 : 22236807 : if (single_succ_to_potentially_threadable_block (bb))
1101 : 4146437 : thread_across_edge (single_succ_edge (bb));
1102 : 36180740 : else if (safe_is_a <gcond *> (*gsi_last_bb (bb))
1103 : 8304915 : && EDGE_COUNT (bb->succs) == 2
1104 : 8304915 : && (EDGE_SUCC (bb, 0)->flags & flags) == 0
1105 : 24105176 : && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
1106 : : {
1107 : 8304915 : edge true_edge, false_edge;
1108 : :
1109 : 8304915 : extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1110 : :
1111 : : /* Only try to thread the edge if it reaches a target block with
1112 : : more than one predecessor and more than one successor. */
1113 : 8304915 : if (potentially_threadable_block (true_edge->dest))
1114 : 936681 : thread_across_edge (true_edge);
1115 : :
1116 : : /* Similarly for the ELSE arm. */
1117 : 8304915 : if (potentially_threadable_block (false_edge->dest))
1118 : 1722724 : thread_across_edge (false_edge);
1119 : : }
1120 : : }
1121 : :
1122 : : // Marker to keep track of the start of the current path.
1123 : : const basic_block jt_state::BB_MARKER = (basic_block) -1;
1124 : :
1125 : : // Record that E is being crossed.
1126 : :
1127 : : void
1128 : 15907319 : jt_state::push (edge e)
1129 : : {
1130 : 15907319 : m_blocks.safe_push (BB_MARKER);
1131 : 15907319 : if (m_blocks.length () == 1)
1132 : 6805842 : m_blocks.safe_push (e->src);
1133 : 15907319 : m_blocks.safe_push (e->dest);
1134 : 15907319 : }
1135 : :
1136 : : // Pop to the last pushed state.
1137 : :
1138 : : void
1139 : 15907319 : jt_state::pop ()
1140 : : {
1141 : 15907319 : if (!m_blocks.is_empty ())
1142 : : {
1143 : 40099463 : while (m_blocks.last () != BB_MARKER)
1144 : 24192144 : m_blocks.pop ();
1145 : : // Pop marker.
1146 : 15907319 : m_blocks.pop ();
1147 : : }
1148 : 15907319 : }
1149 : :
1150 : : // Add BB to the list of blocks seen.
1151 : :
1152 : : void
1153 : 1478983 : jt_state::append_path (basic_block bb)
1154 : : {
1155 : 1478983 : gcc_checking_assert (!m_blocks.is_empty ());
1156 : 1478983 : m_blocks.safe_push (bb);
1157 : 1478983 : }
1158 : :
1159 : : void
1160 : 0 : jt_state::dump (FILE *out)
1161 : : {
1162 : 0 : if (!m_blocks.is_empty ())
1163 : : {
1164 : 0 : auto_vec<basic_block> path;
1165 : 0 : get_path (path);
1166 : 0 : dump_ranger (out, path);
1167 : 0 : }
1168 : 0 : }
1169 : :
1170 : : void
1171 : 0 : jt_state::debug ()
1172 : : {
1173 : 0 : push_dump_file save (stderr, TDF_DETAILS);
1174 : 0 : dump (stderr);
1175 : 0 : }
1176 : :
1177 : : // Convert the current path in jt_state into a path suitable for the
1178 : : // path solver. Return the resulting path in PATH.
1179 : :
1180 : : void
1181 : 7571881 : jt_state::get_path (vec<basic_block> &path)
1182 : : {
1183 : 7571881 : path.truncate (0);
1184 : :
1185 : 44787950 : for (int i = (int) m_blocks.length () - 1; i >= 0; --i)
1186 : : {
1187 : 29644188 : basic_block bb = m_blocks[i];
1188 : :
1189 : 29644188 : if (bb != BB_MARKER)
1190 : 18728237 : path.safe_push (bb);
1191 : : }
1192 : 7571881 : }
1193 : :
1194 : : // Record an equivalence from DST to SRC. If UPDATE_RANGE is TRUE,
1195 : : // update the value range associated with DST.
1196 : :
1197 : : void
1198 : 0 : jt_state::register_equiv (tree dest ATTRIBUTE_UNUSED,
1199 : : tree src ATTRIBUTE_UNUSED,
1200 : : bool update_range ATTRIBUTE_UNUSED)
1201 : : {
1202 : 0 : }
1203 : :
1204 : : // Record any ranges calculated in STMT. If TEMPORARY is TRUE, then
1205 : : // this is a temporary equivalence and should be recorded into the
1206 : : // unwind table, instead of the global table.
1207 : :
1208 : : void
1209 : 43772352 : jt_state::record_ranges_from_stmt (gimple *,
1210 : : bool temporary ATTRIBUTE_UNUSED)
1211 : : {
1212 : 43772352 : }
1213 : :
1214 : : // Record any equivalences created by traversing E.
1215 : :
1216 : : void
1217 : 0 : jt_state::register_equivs_edge (edge)
1218 : : {
1219 : 0 : }
1220 : :
1221 : : void
1222 : 23976423 : jt_state::register_equivs_stmt (gimple *stmt, basic_block bb,
1223 : : jt_simplifier *simplifier)
1224 : : {
1225 : : /* At this point we have a statement which assigns an RHS to an
1226 : : SSA_VAR on the LHS. We want to try and simplify this statement
1227 : : to expose more context sensitive equivalences which in turn may
1228 : : allow us to simplify the condition at the end of the loop.
1229 : :
1230 : : Handle simple copy operations. */
1231 : 23976423 : tree cached_lhs = NULL;
1232 : 23976423 : if (gimple_assign_single_p (stmt)
1233 : 23976423 : && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
1234 : : cached_lhs = gimple_assign_rhs1 (stmt);
1235 : : else
1236 : : {
1237 : : /* A statement that is not a trivial copy.
1238 : : Try to fold the new expression. Inserting the
1239 : : expression into the hash table is unlikely to help. */
1240 : : /* ??? The DOM callback below can be changed to setting
1241 : : the mprts_hook around the call to thread_across_edge,
1242 : : avoiding the use substitution. */
1243 : 23100447 : cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
1244 : : threadedge_valueize);
1245 : 23100447 : if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
1246 : 23100447 : && (!cached_lhs
1247 : 2768146 : || (TREE_CODE (cached_lhs) != SSA_NAME
1248 : 2410911 : && !is_gimple_min_invariant (cached_lhs))))
1249 : : {
1250 : : /* We're going to temporarily copy propagate the operands
1251 : : and see if that allows us to simplify this statement. */
1252 : 20433480 : tree *copy;
1253 : 20433480 : ssa_op_iter iter;
1254 : 20433480 : use_operand_p use_p;
1255 : 20433480 : unsigned int num, i = 0;
1256 : :
1257 : 20433480 : num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
1258 : 20433480 : copy = XALLOCAVEC (tree, num);
1259 : :
1260 : : /* Make a copy of the uses & vuses into USES_COPY, then cprop into
1261 : : the operands. */
1262 : 50251655 : FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1263 : : {
1264 : 29818175 : tree tmp = NULL;
1265 : 29818175 : tree use = USE_FROM_PTR (use_p);
1266 : :
1267 : 29818175 : copy[i++] = use;
1268 : 29818175 : if (TREE_CODE (use) == SSA_NAME)
1269 : 57478431 : tmp = SSA_NAME_VALUE (use);
1270 : 27660256 : if (tmp)
1271 : 7879813 : SET_USE (use_p, tmp);
1272 : : }
1273 : :
1274 : : /* Do not pass state to avoid calling the ranger with the
1275 : : temporarily altered IL. */
1276 : 20433480 : cached_lhs = simplifier->simplify (stmt, stmt, bb, /*state=*/NULL);
1277 : :
1278 : : /* Restore the statement's original uses/defs. */
1279 : 20433480 : i = 0;
1280 : 50251655 : FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1281 : 29818175 : SET_USE (use_p, copy[i++]);
1282 : : }
1283 : : }
1284 : :
1285 : : /* Record the context sensitive equivalence if we were able
1286 : : to simplify this statement. */
1287 : 23976423 : if (cached_lhs
1288 : 23976423 : && (TREE_CODE (cached_lhs) == SSA_NAME
1289 : 2292600 : || is_gimple_min_invariant (cached_lhs)))
1290 : 3964361 : register_equiv (gimple_get_lhs (stmt), cached_lhs,
1291 : : /*update_range=*/false);
1292 : 23976423 : }
1293 : :
1294 : : // Hybrid threader implementation.
1295 : :
1296 : 2001910 : hybrid_jt_simplifier::hybrid_jt_simplifier (gimple_ranger *r,
1297 : 2001910 : path_range_query *q)
1298 : : {
1299 : 2001910 : m_ranger = r;
1300 : 2001910 : m_query = q;
1301 : 2001910 : }
1302 : :
1303 : : tree
1304 : 7571881 : hybrid_jt_simplifier::simplify (gimple *stmt, gimple *, basic_block,
1305 : : jt_state *state)
1306 : : {
1307 : 7571881 : auto_bitmap dependencies;
1308 : 7571881 : auto_vec<basic_block> path;
1309 : :
1310 : 7571881 : state->get_path (path);
1311 : 7571881 : compute_exit_dependencies (dependencies, path, stmt);
1312 : 7571881 : m_query->reset_path (path, dependencies);
1313 : :
1314 : 7571881 : if (gimple_code (stmt) == GIMPLE_COND
1315 : 7571881 : || gimple_code (stmt) == GIMPLE_ASSIGN)
1316 : : {
1317 : 7547488 : value_range r (gimple_range_type (stmt));
1318 : 7547488 : tree ret;
1319 : 15094976 : if (m_query->range_of_stmt (r, stmt) && r.singleton_p (&ret))
1320 : 142025 : return ret;
1321 : 7547488 : }
1322 : 24393 : else if (gimple_code (stmt) == GIMPLE_SWITCH)
1323 : : {
1324 : 24173 : int_range_max r;
1325 : 24173 : gswitch *switch_stmt = dyn_cast <gswitch *> (stmt);
1326 : 24173 : tree index = gimple_switch_index (switch_stmt);
1327 : 24173 : if (m_query->range_of_expr (r, index, stmt))
1328 : 24173 : return find_case_label_range (switch_stmt, &r);
1329 : 24173 : }
1330 : : return NULL;
1331 : 7571881 : }
1332 : :
1333 : : // Calculate the set of exit dependencies for a path and statement to
1334 : : // be simplified. This is different than the
1335 : : // compute_exit_dependencies in the path solver because the forward
1336 : : // threader asks questions about statements not necessarily in the
1337 : : // path. Using the default compute_exit_dependencies in the path
1338 : : // solver gets noticeably less threads.
1339 : :
1340 : : void
1341 : 7571881 : hybrid_jt_simplifier::compute_exit_dependencies (bitmap dependencies,
1342 : : const vec<basic_block> &path,
1343 : : gimple *stmt)
1344 : : {
1345 : : // Start with the imports to the final conditional.
1346 : 7571881 : bitmap_copy (dependencies, m_ranger->gori_ssa ()->imports (path[0]));
1347 : :
1348 : : // Add any other interesting operands we may have missed.
1349 : 7571881 : if (gimple_bb (stmt) != path[0])
1350 : : {
1351 : 37737440 : for (unsigned i = 0; i < gimple_num_ops (stmt); ++i)
1352 : : {
1353 : 30189952 : tree op = gimple_op (stmt, i);
1354 : 30189952 : if (op
1355 : 15094976 : && TREE_CODE (op) == SSA_NAME
1356 : 39579705 : && value_range::supports_type_p (TREE_TYPE (op)))
1357 : 9385375 : bitmap_set_bit (dependencies, SSA_NAME_VERSION (op));
1358 : : }
1359 : : }
1360 : 7571881 : }
|