GCC Middle and Back End API Reference
bitmap_usage Class Reference

#include <bitmap.h>

Inheritance diagram for bitmap_usage:
Collaboration diagram for bitmap_usage:

Public Member Functions

 bitmap_usage ()
 
 bitmap_usage (size_t allocated, size_t times, size_t peak, uint64_t nsearches, uint64_t search_iter)
 
bitmap_usage operator+ (const bitmap_usage &second)
 
void dump (mem_location *loc, const mem_usage &total) const
 
void register_overhead (size_t size)
 
void release_overhead (size_t size)
 
mem_usage operator+ (const mem_usage &second)
 
bool operator== (const mem_usage &second) const
 
bool operator< (const mem_usage &second) const
 
void dump_footer () const
 

Static Public Member Functions

static void dump_header (const char *name)
 
static int compare (const void *first, const void *second)
 
static float get_percent (size_t nominator, size_t denominator)
 
static void print_dash_line (size_t count=140)
 

Data Fields

uint64_t m_nsearches
 
uint64_t m_search_iter
 
size_t m_allocated
 
size_t m_times
 
size_t m_peak
 
size_t m_instances
 

Detailed Description

Functions to support general ended bitmaps. Copyright (C) 1997-2025 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>.
Implementation of sparse integer sets as a linked list or tree. This sparse set representation is suitable for sparse sets with an unknown (a priori) universe. Sets are represented as double-linked lists of container nodes of type "struct bitmap_element" or as a binary trees of the same container nodes. Each container node consists of an index for the first member that could be held in the container, a small array of integers that represent the members in the container, and pointers to the next and previous element in the linked list, or left and right children in the tree. In linked-list form, the container nodes in the list are sorted in ascending order, i.e. the head of the list holds the element with the smallest member of the set. In tree form, nodes to the left have a smaller container index. For a given member I in the set: - the element for I will have index is I / (bits per element) - the position for I within element is I % (bits per element) This representation is very space-efficient for large sparse sets, and the size of the set can be changed dynamically without much overhead. An important parameter is the number of bits per element. In this implementation, there are 128 bits per element. This results in a high storage overhead *per element*, but a small overall overhead if the set is very sparse. The storage requirements for linked-list sparse sets are O(E), with E->N in the worst case (a sparse set with large distances between the values of the set members). This representation also works well for data flow problems where the size of the set may grow dynamically, but care must be taken that the member_p, add_member, and remove_member operations occur with a suitable access pattern. The linked-list set representation works well for problems involving very sparse sets. The canonical example in GCC is, of course, the "set of sets" for some CFG-based data flow problems (liveness analysis, dominance frontiers, etc.). For random-access sparse sets of unknown universe, the binary tree representation is likely to be a more suitable choice. Theoretical access times for the binary tree representation are better than those for the linked-list, but in practice this is only true for truely random access. Often the most suitable representation during construction of the set is not the best choice for the usage of the set. For such cases, the "view" of the set can be changed from one representation to the other. This is an O(E) operation: * from list to tree view : bitmap_tree_view * from tree to list view : bitmap_list_view Traversing linked lists or trees can be cache-unfriendly. Performance can be improved by keeping container nodes in the set grouped together in memory, using a dedicated obstack for a set (or group of related sets). Elements allocated on obstacks are released to a free-list and taken off the free list. If multiple sets are allocated on the same obstack, elements freed from one set may be re-used for one of the other sets. This usually helps avoid cache misses. A single free-list is used for all sets allocated in GGC space. This is bad for persistent sets, so persistent sets should be allocated on an obstack whenever possible. For random-access sets with a known, relatively small universe size, the SparseSet or simple bitmap representations may be more efficient than a linked-list set. LINKED LIST FORM ================ In linked-list form, in-order iterations of the set can be executed efficiently. The downside is that many random-access operations are relatively slow, because the linked list has to be traversed to test membership (i.e. member_p/ add_member/remove_member). To improve the performance of this set representation, the last accessed element and its index are cached. For membership tests on members close to recently accessed members, the cached last element improves membership test to a constant-time operation. The following operations can always be performed in O(1) time in list view: * clear : bitmap_clear * smallest_member : bitmap_first_set_bit * pop_smallest : bitmap_clear_first_set_bit * choose_one : (not implemented, but could be in constant time) The following operations can be performed in O(E) time worst-case in list view (with E the number of elements in the linked list), but in O(1) time with a suitable access patterns: * member_p : bitmap_bit_p * add_member : bitmap_set_bit / bitmap_set_range * remove_member : bitmap_clear_bit / bitmap_clear_range The following operations can be performed in O(E) time in list view: * cardinality : bitmap_count_bits * largest_member : bitmap_last_set_bit (but this could in constant time with a pointer to the last element in the chain) * set_size : bitmap_last_set_bit In tree view the following operations can all be performed in O(log E) amortized time with O(E) worst-case behavior. * smallest_member * pop_smallest * largest_member * set_size * member_p * add_member * remove_member Additionally, the linked-list sparse set representation supports enumeration of the members in O(E) time: * forall : EXECUTE_IF_SET_IN_BITMAP * set_copy : bitmap_copy * set_intersection : bitmap_intersect_p / bitmap_and / bitmap_and_into / EXECUTE_IF_AND_IN_BITMAP * set_union : bitmap_ior / bitmap_ior_into * set_difference : bitmap_intersect_compl_p / bitmap_and_comp / bitmap_and_comp_into / EXECUTE_IF_AND_COMPL_IN_BITMAP * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into * set_compare : bitmap_equal_p Some operations on 3 sets that occur frequently in data flow problems are also implemented: * A | (B & C) : bitmap_ior_and_into * A | (B & ~C) : bitmap_ior_and_compl / bitmap_ior_and_compl_into BINARY TREE FORM ================ An alternate "view" of a bitmap is its binary tree representation. For this representation, splay trees are used because they can be implemented using the same data structures as the linked list, with no overhead for meta-data (like color, or rank) on the tree nodes. In binary tree form, random-access to the set is much more efficient than for the linked-list representation. Downsides are the high cost of clearing the set, and the relatively large number of operations necessary to balance the tree. Also, iterating the set members is not supported. As for the linked-list representation, the last accessed element and its index are cached, so that membership tests on the latest accessed members is a constant-time operation. Other lookups take O(logE) time amortized (but O(E) time worst-case). The following operations can always be performed in O(1) time: * choose_one : (not implemented, but could be implemented in constant time) The following operations can be performed in O(logE) time amortized but O(E) time worst-case, but in O(1) time if the same element is accessed. * member_p : bitmap_bit_p * add_member : bitmap_set_bit * remove_member : bitmap_clear_bit The following operations can be performed in O(logE) time amortized but O(E) time worst-case: * smallest_member : bitmap_first_set_bit * largest_member : bitmap_last_set_bit * set_size : bitmap_last_set_bit The following operations can be performed in O(E) time: * clear : bitmap_clear The binary tree sparse set representation does *not* support any form of enumeration, and does also *not* support logical operations on sets. The binary tree representation is only supposed to be used for sets on which many random-access membership tests will happen.
Bitmap memory usage.

Constructor & Destructor Documentation

◆ bitmap_usage() [1/2]

bitmap_usage::bitmap_usage ( )
inline

References m_nsearches, and m_search_iter.

Referenced by operator+().

◆ bitmap_usage() [2/2]

bitmap_usage::bitmap_usage ( size_t allocated,
size_t times,
size_t peak,
uint64_t nsearches,
uint64_t search_iter )
inline

Member Function Documentation

◆ compare()

static int mem_usage::compare ( const void * first,
const void * second )
inlinestaticinherited

◆ dump()

◆ dump_footer()

void mem_usage::dump_footer ( ) const
inlineinherited

References m_allocated, m_times, PRsa, and SIZE_AMOUNT.

◆ dump_header()

static void bitmap_usage::dump_header ( const char * name)
inlinestatic

◆ get_percent()

static float mem_usage::get_percent ( size_t nominator,
size_t denominator )
inlinestaticinherited

◆ operator+() [1/2]

◆ operator+() [2/2]

mem_usage mem_usage::operator+ ( const mem_usage & second)
inlineinherited

◆ operator<()

bool mem_usage::operator< ( const mem_usage & second) const
inlineinherited

References m_allocated, m_peak, m_times, and mem_usage().

◆ operator==()

bool mem_usage::operator== ( const mem_usage & second) const
inlineinherited

References m_allocated, m_peak, m_times, and mem_usage().

◆ print_dash_line()

static void mem_usage::print_dash_line ( size_t count = 140)
inlinestaticinherited

References count, and fputc().

Referenced by dump_tree_statistics().

◆ register_overhead()

void mem_usage::register_overhead ( size_t size)
inlineinherited

References m_allocated, m_peak, and m_times.

◆ release_overhead()

void mem_usage::release_overhead ( size_t size)
inlineinherited

References gcc_assert, and m_allocated.

Field Documentation

◆ m_allocated

◆ m_instances

size_t mem_usage::m_instances
inherited

◆ m_nsearches

uint64_t bitmap_usage::m_nsearches

◆ m_peak

◆ m_search_iter

uint64_t bitmap_usage::m_search_iter

◆ m_times


The documentation for this class was generated from the following file: