GCC Middle and Back End API Reference
poly-int-types.h File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define bits_to_bytes_round_down(X)   force_align_down_and_div (X, BITS_PER_UNIT)
 
#define bits_to_bytes_round_up(X)   force_align_up_and_div (X, BITS_PER_UNIT)
 
#define num_trailing_bits(X)   force_get_misalignment (X, BITS_PER_UNIT)
 
#define round_down_to_byte_boundary(X)   force_align_down (X, BITS_PER_UNIT)
 
#define round_up_to_byte_boundary(X)   force_align_up (X, BITS_PER_UNIT)
 
#define vector_element_size(SIZE, NELTS)    (exact_div (SIZE, NELTS).to_constant ())
 
#define vector_unroll_factor(NELTS1, NELTS2)    (exact_div (NELTS1, NELTS2).to_constant ())
 
#define MACRO_INT(X)   (X)
 

Typedefs

typedef poly_int< NUM_POLY_INT_COEFFS, unsigned shortpoly_uint16
 
typedef poly_int< NUM_POLY_INT_COEFFS, HOST_WIDE_INTpoly_int64
 
typedef poly_int< NUM_POLY_INT_COEFFS, unsigned HOST_WIDE_INTpoly_uint64
 
typedef poly_int< NUM_POLY_INT_COEFFS, offset_intpoly_offset_int
 
typedef poly_int< NUM_POLY_INT_COEFFS, wide_intpoly_wide_int
 
typedef poly_int< NUM_POLY_INT_COEFFS, wide_int_refpoly_wide_int_ref
 
typedef poly_int< NUM_POLY_INT_COEFFS, widest_intpoly_widest_int
 

Macro Definition Documentation

◆ bits_to_bytes_round_down

#define bits_to_bytes_round_down ( X)    force_align_down_and_div (X, BITS_PER_UNIT)
Divide bit quantity X by BITS_PER_UNIT and round down (towards -Inf).
If X is a bit size, this gives the number of whole bytes spanned by X.

This is safe because non-constant mode sizes must be a whole number
of bytes in size.   

Referenced by expand_assignment(), expand_debug_expr(), expand_expr_real_1(), extract_base_bit_offset(), extract_bit_field_1(), get_inner_reference(), get_inner_reference_aff(), make_extraction(), maybe_instrument_pointer_overflow(), pointer_may_wrap_p(), and set_mem_attributes_minus_bitpos().

◆ bits_to_bytes_round_up

#define bits_to_bytes_round_up ( X)    force_align_up_and_div (X, BITS_PER_UNIT)
Divide bit quantity X by BITS_PER_UNIT and round up (towards +Inf).
If X is a bit size, this gives the number of whole or partial bytes
spanned by X.

This is safe because non-constant mode sizes must be a whole number
of bytes in size.   

Referenced by expand_expr_real_1(), extract_bit_field_1(), get_inner_reference_aff(), store_bit_field(), and store_field().

◆ MACRO_INT

#define MACRO_INT ( X)    (X)
Wrapper for poly_int arguments to target macros, so that if a target
doesn't need polynomial-sized modes, its header file can continue to
treat the argument as a normal constant.  This should go away once
macros are moved to target hooks.  It shouldn't be used in other
contexts.   

Referenced by push_operand().

◆ num_trailing_bits

#define num_trailing_bits ( X)    force_get_misalignment (X, BITS_PER_UNIT)
Return the number of bits in bit quantity X that do not belong to
whole bytes.  This is equivalent to:

    X - bits_to_bytes_round_down (X) * BITS_PER_UNIT

This is safe because non-constant mode sizes must be a whole number
of bytes in size.   

Referenced by expand_assignment(), expand_debug_expr(), expand_expr_real_1(), extract_bit_field_1(), and get_inner_reference().

◆ round_down_to_byte_boundary

#define round_down_to_byte_boundary ( X)    force_align_down (X, BITS_PER_UNIT)
Round bit quantity X down to the nearest byte boundary.

This is safe because non-constant mode sizes must be a whole number
of bytes in size.   

◆ round_up_to_byte_boundary

#define round_up_to_byte_boundary ( X)    force_align_up (X, BITS_PER_UNIT)
Round bit quantity X up the nearest byte boundary.

This is safe because non-constant mode sizes must be a whole number
of bytes in size.   

◆ vector_element_size

#define vector_element_size ( SIZE,
NELTS )    (exact_div (SIZE, NELTS).to_constant ())
Return the size of an element in a vector of size SIZE, given that
the vector has NELTS elements.  The return value is in the same units
as SIZE (either bits or bytes).

to_constant () is safe in this situation because vector elements are
always constant-sized scalars.   

Referenced by build_truth_vector_type_for(), build_truth_vector_type_for_mode(), fold_view_convert_vector_encoding(), native_decode_vector_rtx(), native_encode_rtx(), simplify_const_vector_byte_offset(), simplify_const_vector_subreg(), vect_recog_bool_pattern(), and vector_alignment_reachable_p().

◆ vector_unroll_factor

#define vector_unroll_factor ( NELTS1,
NELTS2 )    (exact_div (NELTS1, NELTS2).to_constant ())
Return the number of unroll times when a vector that has NELTS1 elements
is unrolled to vectors that have NELTS2 elements.

to_constant () is safe in this situation because the multiples of the
NELTS of two vectors are always constant-size scalars.   

Referenced by ipa_simd_modify_function_body(), simd_clone_adjust(), simd_clone_adjust_argument_types(), simd_clone_init_simd_arrays(), and vectorizable_simd_clone_call().

Typedef Documentation

◆ poly_int64

◆ poly_offset_int

◆ poly_uint16

Typedefs for polynomial integers used in GCC.
   Copyright (C) 2016-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.   

◆ poly_uint64

◆ poly_wide_int

◆ poly_wide_int_ref

◆ poly_widest_int