GCC Middle and Back End API Reference
rtl.h
Go to the documentation of this file.
1/* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2025 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_RTL_H
21#define GCC_RTL_H
22
23/* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26#ifdef GENERATOR_FILE
27#include "real.h"
28#include "fixed-value.h"
29#include "statistics.h"
30#include "vec.h"
31#include "hash-table.h"
32#include "hash-set.h"
33#include "input.h"
34#include "is-a.h"
35#endif /* GENERATOR_FILE */
36
37#include "hard-reg-set.h"
38
40
41/* Value used by some passes to "recognize" noop moves as valid
42 instructions. */
43#define NOOP_MOVE_INSN_CODE INT_MAX
44
45/* Register Transfer Language EXPRESSIONS CODES */
46
47#define RTX_CODE enum rtx_code
48enum rtx_code : unsigned {
49
50#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
51#include "rtl.def" /* rtl expressions are documented here */
52#undef DEF_RTL_EXPR
53
54 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
55 NUM_RTX_CODE.
56 Assumes default enum value assignment. */
57
58/* The cast here, saves many elsewhere. */
59#define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
60
61/* Similar, but since generator files get more entries... */
62#ifdef GENERATOR_FILE
63# define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64#endif
65
66#define RTX_CODE_BITSIZE 8
67
68/* Register Transfer Language EXPRESSIONS CODE CLASSES */
69
71 /* We check bit 0-1 of some rtx class codes in the predicates below. */
72
73 /* Bit 0 = comparison if 0, arithmetic is 1
74 Bit 1 = 1 if commutative. */
75 RTX_COMPARE, /* 0 */
79
80 /* Must follow the four preceding values. */
81 RTX_UNARY, /* 4 */
82
86
87 /* Bit 0 = 1 if constant. */
88 RTX_OBJ, /* 8 */
90
94};
95
96#define RTX_OBJ_MASK (~1)
97#define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98#define RTX_COMPARE_MASK (~1)
99#define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100#define RTX_ARITHMETIC_MASK (~1)
101#define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102#define RTX_BINARY_MASK (~3)
103#define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104#define RTX_COMMUTATIVE_MASK (~2)
105#define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106#define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
107
108extern const unsigned char rtx_length[NUM_RTX_CODE];
109#define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
110
111extern const char * const rtx_name[NUM_RTX_CODE];
112#define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
113
114extern const char * const rtx_format[NUM_RTX_CODE];
115#define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
116
117extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118#define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
119
120/* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121 and NEXT_INSN fields). */
122#define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
123
124extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125extern const unsigned char rtx_next[NUM_RTX_CODE];
126
127/* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
128 relative to which the offsets are calculated, as explained in rtl.def. */
130{
131 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132 unsigned min_align: 8;
133 /* Flags: */
134 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
135 unsigned min_after_vec: 1; /* minimum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned max_after_vec: 1; /* maximum address target label is
138 after the ADDR_DIFF_VEC. */
139 unsigned min_after_base: 1; /* minimum address target label is
140 after BASE. */
141 unsigned max_after_base: 1; /* maximum address target label is
142 after BASE. */
143 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
145 unsigned : 2;
146 unsigned scale : 8;
147};
148
149/* Structure used to describe the attributes of a MEM. These are hashed
150 so MEMs that the same attributes share a data structure. This means
151 they cannot be modified in place. */
152class GTY(()) mem_attrs
153{
154public:
155 mem_attrs ();
156
157 /* The expression that the MEM accesses, or null if not known.
158 This expression might be larger than the memory reference itself.
159 (In other words, the MEM might access only part of the object.) */
161
162 /* The offset of the memory reference from the start of EXPR.
163 Only valid if OFFSET_KNOWN_P. */
165
166 /* The size of the memory reference in bytes. Only valid if
167 SIZE_KNOWN_P. */
169
170 /* The alias set of the memory reference. */
172
173 /* The alignment of the reference in bits. Always a multiple of
174 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
175 than the memory reference itself. */
176 unsigned int align;
177
178 /* The address space that the memory reference uses. */
179 unsigned char addrspace;
180
181 /* True if OFFSET is known. */
183
184 /* True if SIZE is known. */
186};
187
188/* Structure used to describe the attributes of a REG in similar way as
189 mem_attrs does for MEM above. Note that the OFFSET field is calculated
190 in the same way as for mem_attrs, rather than in the same way as a
191 SUBREG_BYTE. For example, if a big-endian target stores a byte
192 object in the low part of a 4-byte register, the OFFSET field
193 will be -3 rather than 0. */
194
195class GTY((for_user)) reg_attrs {
196public:
197 tree decl; /* decl corresponding to REG. */
198 poly_int64 offset; /* Offset from start of DECL. */
199};
200
201/* Common union for an element of an rtx. */
202
221
222/* Describes the properties of a REG. */
223struct GTY(()) reg_info {
224 /* The value of REGNO. */
225 unsigned int regno;
226
227 /* The value of REG_NREGS. */
228 unsigned int nregs : 8;
229 unsigned int unused : 24;
230
231 /* The value of REG_ATTRS. */
233};
234
235/* This structure remembers the position of a SYMBOL_REF within an
236 object_block structure. A SYMBOL_REF only provides this information
237 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
238struct GTY(()) block_symbol {
239 /* The usual SYMBOL_REF fields. */
240 rtunion GTY ((skip)) fld[2];
241
242 /* The block that contains this object. */
244
245 /* The offset of this object from the start of its block. It is negative
246 if the symbol has not yet been assigned an offset. */
247 HOST_WIDE_INT offset;
248};
249
250/* Describes a group of objects that are to be placed together in such
251 a way that their relative positions are known. */
252struct GTY((for_user)) object_block {
253 /* The section in which these objects should be placed. */
255
256 /* The alignment of the first object, measured in bits. */
257 unsigned int alignment;
258
259 /* The total size of the objects, measured in bytes. */
260 HOST_WIDE_INT size;
261
262 /* The SYMBOL_REFs for each object. The vector is sorted in
263 order of increasing offset and the following conditions will
264 hold for each element X:
265
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 !SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
271
272 /* All the anchor SYMBOL_REFs used to address these objects, sorted
273 in order of increasing offset, and then increasing TLS model.
274 The following conditions will hold for each element X in this vector:
275
276 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
277 SYMBOL_REF_ANCHOR_P (X)
278 SYMBOL_REF_BLOCK (X) == [address of this structure]
279 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
281};
282
284 HOST_WIDE_INT elem[1];
285};
286
287/* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
288#define CWI_GET_NUM_ELEM(RTX) \
289 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
290#define CWI_PUT_NUM_ELEM(RTX, NUM) \
291 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
292
296
297/* RTL expression ("rtx"). */
298
299/* The GTY "desc" and "tag" options below are a kludge: we need a desc
300 field for gengtype to recognize that inheritance is occurring,
301 so that all subclasses are redirected to the traversal hook for the
302 base class.
303 However, all of the fields are in the base class, and special-casing
304 is at work. Hence we use desc and tag of 0, generating a switch
305 statement of the form:
306 switch (0)
307 {
308 case 0: // all the work happens here
309 }
310 in order to work with the existing special-casing in gengtype. */
311
312struct GTY((desc("0"), tag("0"),
313 chain_next ("RTX_NEXT (&%h)"),
314 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
315 /* The kind of value the expression has. */
316 ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE;
318 /* The kind of expression this is. */
319 ENUM_BITFIELD(rtx_code) code: RTX_CODE_BITSIZE;
320
321 /* 1 in a MEM if we should keep the alias set for this mem unchanged
322 when we access a component.
323 1 in a JUMP_INSN if it is a crossing jump.
324 1 in a CALL_INSN if it is a sibling call.
325 1 in a SET that is for a return.
326 In a CODE_LABEL, part of the two-bit alternate entry field.
327 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.cc.
328 1 in a VALUE is SP_BASED_VALUE_P in cselib.cc.
329 1 in a SUBREG generated by LRA for reload insns.
330 1 in a REG if this is a static chain register.
331 Dumped as "/j" in RTL dumps. */
332 unsigned int jump : 1;
333 /* In a CODE_LABEL, part of the two-bit alternate entry field.
334 1 in a MEM if it cannot trap.
335 1 in a CALL_INSN logically equivalent to
336 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
337 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.cc.
338 Dumped as "/c" in RTL dumps. */
339 unsigned int call : 1;
340 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
341 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
342 1 in a SYMBOL_REF if it addresses something in the per-function
343 constants pool.
344 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
345 1 in a NOTE, or EXPR_LIST for a const call.
346 1 in a JUMP_INSN of an annulling branch.
347 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.cc.
348 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.cc.
349 1 in a clobber temporarily created for LRA.
350 Dumped as "/u" in RTL dumps. */
351 unsigned int unchanging : 1;
352 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
353 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
354 if it has been deleted.
355 1 in a REG expression if corresponds to a variable declared by the user,
356 0 for an internally generated temporary.
357 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
358 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
359 non-local label.
360 In a SYMBOL_REF, this flag is used for machine-specific purposes.
361 In a PREFETCH, this flag indicates that it should be considered a
362 scheduling barrier.
363 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.cc.
364 Dumped as "/v" in RTL dumps. */
365 unsigned int volatil : 1;
366 /* 1 in a REG if the register is used only in exit code a loop.
367 1 in a SUBREG expression if was generated from a variable with a
368 promoted mode.
369 1 in a CODE_LABEL if the label is used for nonlocal gotos
370 and must not be deleted even if its count is zero.
371 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
372 together with the preceding insn. Valid only within sched.
373 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
374 from the target of a branch. Valid from reorg until end of compilation;
375 cleared before used.
376
377 The name of the field is historical. It used to be used in MEMs
378 to record whether the MEM accessed part of a structure.
379 Dumped as "/s" in RTL dumps. */
380 unsigned int in_struct : 1;
381 /* At the end of RTL generation, 1 if this rtx is used. This is used for
382 copying shared structure. See `unshare_all_rtl'.
383 In a REG, this is not needed for that purpose, and used instead
384 in `leaf_renumber_regs_insn'.
385 1 in a SYMBOL_REF, means that emit_library_call
386 has used it as the function.
387 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.cc.
388 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.cc. */
389 unsigned int used : 1;
390 /* 1 in an INSN or a SET if this rtx is related to the call frame,
391 either changing how we compute the frame address or saving and
392 restoring registers in the prologue and epilogue.
393 1 in a REG or MEM if it is a pointer.
394 1 in a SYMBOL_REF if it addresses something in the per-function
395 constant string pool.
396 1 in a VALUE is VALUE_CHANGED in var-tracking.cc.
397 Dumped as "/f" in RTL dumps. */
398 unsigned frame_related : 1;
399 /* 1 in a REG or PARALLEL that is the current function's return value.
400 1 in a SYMBOL_REF for a weak symbol.
401 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
402 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.cc.
403 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.cc.
404 Dumped as "/i" in RTL dumps. */
405 unsigned return_val : 1;
406
407 union {
408 /* The final union field is aligned to 64 bits on LP64 hosts,
409 giving a 32-bit gap after the fields above. We optimize the
410 layout for that case and use the gap for extra code-specific
411 information. */
413 /* The ORIGINAL_REGNO of a REG. */
414 unsigned int original_regno;
416 /* The INSN_UID of an RTX_INSN-class code. */
417 int insn_uid;
419 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
420 unsigned int symbol_ref_flags;
422 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
424
425 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
426 HOST_WIDE_INTs in the hwivec_def. */
427 unsigned int num_elem;
428
429 /* Information about a CONST_VECTOR. */
430 struct
432 /* The value of CONST_VECTOR_NPATTERNS. */
433 unsigned int npatterns : 16;
435 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
436 unsigned int nelts_per_pattern : 8;
438 /* For future expansion. */
439 unsigned int unused : 8;
440 } const_vector;
441 } GTY ((skip)) u2;
442
443 /* The first element of the operands of this rtx.
444 The number of operands and their types are controlled
445 by the `code' field, according to rtl.def. */
446 union u {
448 HOST_WIDE_INT hwint[1];
449 struct reg_info reg;
453 struct hwivec_def hwiv;
454 struct const_poly_int_def cpi;
455 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
456};
457
458/* A node for constructing singly-linked lists of rtx. */
459
460struct GTY(()) rtx_expr_list : public rtx_def
461{
462private:
463 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
464
465public:
466 /* Get next in list. */
467 rtx_expr_list *next () const;
468
469 /* Get at the underlying rtx. */
470 rtx element () const;
471};
472
473template <>
474template <>
475inline bool
477{
478 return rt->code == EXPR_LIST;
480
481struct GTY(()) rtx_insn_list : public rtx_def
482{
483private:
484 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
485
486 This is an instance of:
487
488 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
489
490 i.e. a node for constructing singly-linked lists of rtx_insn *, where
491 the list is "external" to the insn (as opposed to the doubly-linked
492 list embedded within rtx_insn itself). */
493
494public:
495 /* Get next in list. */
496 rtx_insn_list *next () const;
497
498 /* Get at the underlying instruction. */
499 rtx_insn *insn () const;
500
501};
502
503template <>
504template <>
505inline bool
507{
508 return rt->code == INSN_LIST;
509}
510
511/* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
512 typically (but not always) of rtx_insn *, used in the late passes. */
513
514struct GTY(()) rtx_sequence : public rtx_def
515{
516private:
517 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
518
519public:
520 /* Get number of elements in sequence. */
521 int len () const;
522
523 /* Get i-th element of the sequence. */
524 rtx element (int index) const;
525
526 /* Get i-th element of the sequence, with a checked cast to
527 rtx_insn *. */
528 rtx_insn *insn (int index) const;
529};
530
531template <>
532template <>
533inline bool
535{
536 return rt->code == SEQUENCE;
537}
538
539template <>
540template <>
541inline bool
543{
544 return rt->code == SEQUENCE;
546
547struct GTY(()) rtx_insn : public rtx_def
548{
549public:
550 /* No extra fields, but adds the invariant:
551
552 (INSN_P (X)
553 || NOTE_P (X)
554 || JUMP_TABLE_DATA_P (X)
555 || BARRIER_P (X)
556 || LABEL_P (X))
557
558 i.e. that we must be able to use the following:
559 INSN_UID ()
560 NEXT_INSN ()
561 PREV_INSN ()
562 i.e. we have an rtx that has an INSN_UID field and can be part of
563 a linked list of insns.
564 */
565
566 /* Returns true if this insn has been deleted. */
567
568 bool deleted () const { return volatil; }
569
570 /* Mark this insn as deleted. */
571
572 void set_deleted () { volatil = true; }
573
574 /* Mark this insn as not deleted. */
575
576 void set_undeleted () { volatil = false; }
577};
578
579/* Subclasses of rtx_insn. */
580
581struct GTY(()) rtx_debug_insn : public rtx_insn
582{
583 /* No extra fields, but adds the invariant:
584 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
585 i.e. an annotation for tracking variable assignments.
586
587 This is an instance of:
588 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeLie", RTX_INSN)
589 from rtl.def. */
591
592struct GTY(()) rtx_nonjump_insn : public rtx_insn
593{
594 /* No extra fields, but adds the invariant:
595 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
596 i.e an instruction that cannot jump.
597
598 This is an instance of:
599 DEF_RTL_EXPR(INSN, "insn", "uuBeLie", RTX_INSN)
600 from rtl.def. */
602
603struct GTY(()) rtx_jump_insn : public rtx_insn
604{
605public:
606 /* No extra fields, but adds the invariant:
607 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
608 i.e. an instruction that can possibly jump.
609
610 This is an instance of:
611 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeLie0", RTX_INSN)
612 from rtl.def. */
613
614 /* Returns jump target of this instruction. The returned value is not
615 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
616 expression. Also, when the code label is marked "deleted", it is
617 replaced by a NOTE. In some cases the value is NULL_RTX. */
618
619 inline rtx jump_label () const;
620
621 /* Returns jump target cast to rtx_code_label *. */
622
623 inline rtx_code_label *jump_target () const;
624
625 /* Set jump target. */
626
627 inline void set_jump_target (rtx_code_label *);
629
630struct GTY(()) rtx_call_insn : public rtx_insn
631{
632 /* No extra fields, but adds the invariant:
633 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
634 i.e. an instruction that can possibly call a subroutine
635 but which will not change which instruction comes next
636 in the current function.
637
638 This is an instance of:
639 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeLiee", RTX_INSN)
640 from rtl.def. */
642
643struct GTY(()) rtx_jump_table_data : public rtx_insn
644{
645 /* No extra fields, but adds the invariant:
646 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
647 i.e. a data for a jump table, considered an instruction for
648 historical reasons.
649
650 This is an instance of:
651 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
652 from rtl.def. */
653
654 /* This can be either:
655
656 (a) a table of absolute jumps, in which case PATTERN (this) is an
657 ADDR_VEC with arg 0 a vector of labels, or
658
659 (b) a table of relative jumps (e.g. for -fPIC), in which case
660 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
661 arg 1 the vector of labels.
662
663 This method gets the underlying vec. */
664
665 inline rtvec get_labels () const;
666 inline scalar_int_mode get_data_mode () const;
668
669struct GTY(()) rtx_barrier : public rtx_insn
670{
671 /* No extra fields, but adds the invariant:
672 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
673 i.e. a marker that indicates that control will not flow through.
674
675 This is an instance of:
676 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
677 from rtl.def. */
679
680struct GTY(()) rtx_code_label : public rtx_insn
681{
682 /* No extra fields, but adds the invariant:
683 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
684 i.e. a label in the assembler.
685
686 This is an instance of:
687 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
688 from rtl.def. */
690
691struct GTY(()) rtx_note : public rtx_insn
692{
693 /* No extra fields, but adds the invariant:
694 NOTE_P(X) aka (GET_CODE (X) == NOTE)
695 i.e. a note about the corresponding source code.
696
697 This is an instance of:
698 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
699 from rtl.def. */
700};
702/* The size in bytes of an rtx header (code, mode and flags). */
703#define RTX_HDR_SIZE offsetof (struct rtx_def, u)
705/* The size in bytes of an rtx with code CODE. */
706#define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
707
708#define NULL_RTX (rtx) 0
709
710/* The "next" and "previous" RTX, relative to this one. */
711
712#define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
713 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
714
715/* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
716 */
717#define RTX_PREV(X) ((INSN_P (X) \
718 || NOTE_P (X) \
719 || JUMP_TABLE_DATA_P (X) \
720 || BARRIER_P (X) \
721 || LABEL_P (X)) \
722 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
723 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
724 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
725
726/* Define macros to access the `code' field of the rtx. */
728#define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
729#define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
731#define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
732#define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
733
734/* RTL vector. These appear inside RTX's when there is a need
735 for a variable number of things. The principle use is inside
736 PARALLEL expressions. */
738struct GTY(()) rtvec_def {
739 int num_elem; /* number of elements */
740 rtx GTY ((length ("%h.num_elem"))) elem[1];
742
743#define NULL_RTVEC (rtvec) 0
745#define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
746#define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
748/* Predicate yielding nonzero iff X is an rtx for a register. */
749#define REG_P(X) (GET_CODE (X) == REG)
751/* Predicate yielding nonzero iff X is an rtx for a memory location. */
752#define MEM_P(X) (GET_CODE (X) == MEM)
753
754#if TARGET_SUPPORTS_WIDE_INT
755
756/* Match CONST_*s that can represent compile-time constant integers. */
757#define CASE_CONST_SCALAR_INT \
758 case CONST_INT: \
759 case CONST_WIDE_INT
760
761/* Match CONST_*s for which pointer equality corresponds to value
762 equality. */
763#define CASE_CONST_UNIQUE \
764 case CONST_INT: \
765 case CONST_WIDE_INT: \
766 case CONST_POLY_INT: \
767 case CONST_DOUBLE: \
768 case CONST_FIXED
769
770/* Match all CONST_* rtxes. */
771#define CASE_CONST_ANY \
772 case CONST_INT: \
773 case CONST_WIDE_INT: \
774 case CONST_POLY_INT: \
775 case CONST_DOUBLE: \
776 case CONST_FIXED: \
777 case CONST_VECTOR
778
779#else
781/* Match CONST_*s that can represent compile-time constant integers. */
782#define CASE_CONST_SCALAR_INT \
783 case CONST_INT: \
784 case CONST_DOUBLE
785
786/* Match CONST_*s for which pointer equality corresponds to value
787 equality. */
788#define CASE_CONST_UNIQUE \
789 case CONST_INT: \
790 case CONST_DOUBLE: \
791 case CONST_FIXED
793/* Match all CONST_* rtxes. */
794#define CASE_CONST_ANY \
795 case CONST_INT: \
796 case CONST_DOUBLE: \
797 case CONST_FIXED: \
798 case CONST_VECTOR
799#endif
801/* Predicate yielding nonzero iff X is an rtx for a constant integer. */
802#define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
804/* Predicate yielding nonzero iff X is an rtx for a constant integer. */
805#define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
806
807/* Predicate yielding nonzero iff X is an rtx for a polynomial constant
808 integer. */
809#define CONST_POLY_INT_P(X) \
810 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
812/* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
813#define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
814
815/* Predicate yielding true iff X is an rtx for a double-int
816 or floating point constant. */
817#define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
819/* Predicate yielding true iff X is an rtx for a double-int. */
820#define CONST_DOUBLE_AS_INT_P(X) \
821 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
822
823/* Predicate yielding true iff X is an rtx for a integer const. */
824#if TARGET_SUPPORTS_WIDE_INT
825#define CONST_SCALAR_INT_P(X) \
826 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
827#else
828#define CONST_SCALAR_INT_P(X) \
829 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
830#endif
832/* Predicate yielding true iff X is an rtx for a double-int. */
833#define CONST_DOUBLE_AS_FLOAT_P(X) \
834 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
836/* Predicate yielding nonzero iff X is an rtx for a constant vector. */
837#define CONST_VECTOR_P(X) (GET_CODE (X) == CONST_VECTOR)
839/* Predicate yielding nonzero iff X is a label insn. */
840#define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
842/* Predicate yielding nonzero iff X is a jump insn. */
843#define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
845/* Predicate yielding nonzero iff X is a call insn. */
846#define CALL_P(X) (GET_CODE (X) == CALL_INSN)
847
848/* 1 if RTX is a call_insn for a fake call.
849 CALL_INSN use "used" flag to indicate it's a fake call. */
850#define FAKE_CALL_P(RTX) \
851 (RTL_FLAG_CHECK1 ("FAKE_CALL_P", (RTX), CALL_INSN)->used)
853/* Predicate yielding nonzero iff X is an insn that cannot jump. */
854#define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
856/* Predicate yielding nonzero iff X is a debug note/insn. */
857#define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
859/* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
860#define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
862/* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
863#define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
864/* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
865#define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
866/* Nonzero if DEBUG_INSN_P may possibly hold. */
867#define MAY_HAVE_DEBUG_INSNS \
868 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
870/* Predicate yielding nonzero iff X is a real insn. */
871#define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
873/* Predicate yielding nonzero iff X is a note insn. */
874#define NOTE_P(X) (GET_CODE (X) == NOTE)
876/* Predicate yielding nonzero iff X is a barrier insn. */
877#define BARRIER_P(X) (GET_CODE (X) == BARRIER)
879/* Predicate yielding nonzero iff X is a data for a jump table. */
880#define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
882/* Predicate yielding nonzero iff RTX is a subreg. */
883#define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
885/* Predicate yielding true iff RTX is a symbol ref. */
886#define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
887
888template <>
889template <>
890inline bool
892{
893 return (INSN_P (rt)
894 || NOTE_P (rt)
895 || JUMP_TABLE_DATA_P (rt)
896 || BARRIER_P (rt)
897 || LABEL_P (rt));
898}
899
900template <>
901template <>
902inline bool
904{
905 return (INSN_P (rt)
906 || NOTE_P (rt)
907 || JUMP_TABLE_DATA_P (rt)
908 || BARRIER_P (rt)
909 || LABEL_P (rt));
910}
911
912template <>
913template <>
914inline bool
916{
917 return DEBUG_INSN_P (rt);
918}
919
920template <>
921template <>
922inline bool
924{
925 return NONJUMP_INSN_P (rt);
926}
927
928template <>
929template <>
930inline bool
932{
933 return JUMP_P (rt);
934}
935
936template <>
937template <>
938inline bool
940{
941 return JUMP_P (insn);
942}
943
944template <>
945template <>
946inline bool
948{
949 return CALL_P (rt);
950}
951
952template <>
953template <>
954inline bool
956{
957 return CALL_P (insn);
958}
959
960template <>
961template <>
962inline bool
964{
965 return JUMP_TABLE_DATA_P (rt);
966}
967
968template <>
969template <>
970inline bool
972{
973 return JUMP_TABLE_DATA_P (insn);
974}
975
976template <>
977template <>
978inline bool
980{
981 return BARRIER_P (rt);
982}
983
984template <>
985template <>
986inline bool
988{
989 return LABEL_P (rt);
990}
991
992template <>
993template <>
994inline bool
996{
997 return LABEL_P (insn);
998}
999
1000template <>
1001template <>
1002inline bool
1004{
1005 return NOTE_P (rt);
1006}
1007
1008template <>
1009template <>
1010inline bool
1012{
1013 return NOTE_P (insn);
1014}
1016/* Predicate yielding nonzero iff X is a return or simple_return. */
1017#define ANY_RETURN_P(X) \
1018 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1019
1020/* 1 if X is a unary operator. */
1021
1022#define UNARY_P(X) \
1023 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1024
1025/* 1 if X is a binary operator. */
1026
1027#define BINARY_P(X) \
1028 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1029
1030/* 1 if X is an arithmetic operator. */
1031
1032#define ARITHMETIC_P(X) \
1033 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1034 == RTX_ARITHMETIC_RESULT)
1035
1036/* 1 if X is an arithmetic operator. */
1037
1038#define COMMUTATIVE_ARITH_P(X) \
1039 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1040
1041/* 1 if X is a commutative arithmetic operator or a comparison operator.
1042 These two are sometimes selected together because it is possible to
1043 swap the two operands. */
1044
1045#define SWAPPABLE_OPERANDS_P(X) \
1046 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1047 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1048 | (1 << RTX_COMPARE)))
1049
1050/* 1 if X is a non-commutative operator. */
1051
1052#define NON_COMMUTATIVE_P(X) \
1053 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1054 == RTX_NON_COMMUTATIVE_RESULT)
1055
1056/* 1 if X is a commutative operator on integers. */
1057
1058#define COMMUTATIVE_P(X) \
1059 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1060 == RTX_COMMUTATIVE_RESULT)
1061
1062/* 1 if X is a relational operator. */
1063
1064#define COMPARISON_P(X) \
1065 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1066
1067/* 1 if X is a constant value that is an integer. */
1068
1069#define CONSTANT_P(X) \
1070 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1072/* 1 if X is a LABEL_REF. */
1073#define LABEL_REF_P(X) \
1074 (GET_CODE (X) == LABEL_REF)
1076/* 1 if X can be used to represent an object. */
1077#define OBJECT_P(X) \
1078 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1079
1080/* General accessor macros for accessing the fields of an rtx. */
1081
1082#if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1083/* The bit with a star outside the statement expr and an & inside is
1084 so that N can be evaluated only once. */
1085#define RTL_CHECK1(RTX, N, C1) __extension__ \
1086(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1087 const enum rtx_code _code = GET_CODE (_rtx); \
1088 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1089 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1090 __FUNCTION__); \
1091 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1092 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1093 __FUNCTION__); \
1094 &_rtx->u.fld[_n]; }))
1095
1096#define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1097(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1098 const enum rtx_code _code = GET_CODE (_rtx); \
1099 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1100 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1101 __FUNCTION__); \
1102 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1103 && GET_RTX_FORMAT (_code)[_n] != C2) \
1104 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1105 __FUNCTION__); \
1106 &_rtx->u.fld[_n]; }))
1107
1108#define RTL_CHECKC1(RTX, N, C) __extension__ \
1109(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1110 if (GET_CODE (_rtx) != (C)) \
1111 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1112 __FUNCTION__); \
1113 &_rtx->u.fld[_n]; }))
1114
1115#define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1116(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1117 const enum rtx_code _code = GET_CODE (_rtx); \
1118 if (_code != (C1) && _code != (C2)) \
1119 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1120 __FUNCTION__); \
1121 &_rtx->u.fld[_n]; }))
1122
1123#define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1124(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1125 const enum rtx_code _code = GET_CODE (_rtx); \
1126 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1127 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1128 __LINE__, __FUNCTION__); \
1129 &_rtx->u.fld[_n]; }))
1130
1131#define RTVEC_ELT(RTVEC, I) __extension__ \
1132(*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1133 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1134 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1135 __FUNCTION__); \
1136 &_rtvec->elem[_i]; }))
1137
1138#define XWINT(RTX, N) __extension__ \
1139(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1140 const enum rtx_code _code = GET_CODE (_rtx); \
1141 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1142 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1143 __FUNCTION__); \
1144 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1145 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1146 __FUNCTION__); \
1147 &_rtx->u.hwint[_n]; }))
1148
1149#define CWI_ELT(RTX, I) __extension__ \
1150(*({ __typeof (RTX) const _cwi = (RTX); \
1151 int _max = CWI_GET_NUM_ELEM (_cwi); \
1152 const int _i = (I); \
1153 if (_i < 0 || _i >= _max) \
1154 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1155 __FUNCTION__); \
1156 &_cwi->u.hwiv.elem[_i]; }))
1157
1158#define XCWINT(RTX, N, C) __extension__ \
1159(*({ __typeof (RTX) const _rtx = (RTX); \
1160 if (GET_CODE (_rtx) != (C)) \
1161 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1162 __FUNCTION__); \
1163 &_rtx->u.hwint[N]; }))
1164
1165#define XCMWINT(RTX, N, C, M) __extension__ \
1166(*({ __typeof (RTX) const _rtx = (RTX); \
1167 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1168 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1169 __LINE__, __FUNCTION__); \
1170 &_rtx->u.hwint[N]; }))
1171
1172#define XCNMPRV(RTX, C, M) __extension__ \
1173({ __typeof (RTX) const _rtx = (RTX); \
1174 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1175 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1176 __LINE__, __FUNCTION__); \
1177 &_rtx->u.rv; })
1178
1179#define XCNMPFV(RTX, C, M) __extension__ \
1180({ __typeof (RTX) const _rtx = (RTX); \
1181 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1182 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1183 __LINE__, __FUNCTION__); \
1184 &_rtx->u.fv; })
1185
1186#define REG_CHECK(RTX) __extension__ \
1187({ __typeof (RTX) const _rtx = (RTX); \
1188 if (GET_CODE (_rtx) != REG) \
1189 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1190 __FUNCTION__); \
1191 &_rtx->u.reg; })
1192
1193#define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1194({ __typeof (RTX) const _symbol = (RTX); \
1195 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1196 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1197 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1198 __FUNCTION__); \
1199 &_symbol->u.block_sym; })
1200
1201#define HWIVEC_CHECK(RTX,C) __extension__ \
1202({ __typeof (RTX) const _symbol = (RTX); \
1203 RTL_CHECKC1 (_symbol, 0, C); \
1204 &_symbol->u.hwiv; })
1205
1206extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1207 const char *)
1208 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1209extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1210 const char *)
1211 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1212extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1213 int, const char *)
1214 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1215extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1216 int, const char *)
1217 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1218extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1219 const char *, int, const char *)
1220 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1221extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1222 enum rtx_code, const char *, int,
1223 const char *)
1224 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1225extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1226 bool, const char *, int, const char *)
1227 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1228extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1229 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1230extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1231 const char *)
1232 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1233extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1234 const char *)
1235 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1236
1237#else /* not ENABLE_RTL_CHECKING */
1239#define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1240#define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1241#define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1242#define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1243#define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1244#define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1245#define XWINT(RTX, N) ((RTX)->u.hwint[N])
1246#define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1247#define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1248#define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1249#define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1250#define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1251#define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1252#define REG_CHECK(RTX) (&(RTX)->u.reg)
1253#define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1254#define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1255
1256#endif
1257
1258/* General accessor macros for accessing the flags of an rtx. */
1260/* Access an individual rtx flag, with no checking of any kind. */
1261#define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1262
1263#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1264#define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1265({ __typeof (RTX) const _rtx = (RTX); \
1266 if (GET_CODE (_rtx) != C1) \
1267 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1268 __FUNCTION__); \
1269 _rtx; })
1270
1271#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1272({ __typeof (RTX) const _rtx = (RTX); \
1273 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1274 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1275 __FUNCTION__); \
1276 _rtx; })
1277
1278#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1279({ __typeof (RTX) const _rtx = (RTX); \
1280 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1281 && GET_CODE (_rtx) != C3) \
1282 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1283 __FUNCTION__); \
1284 _rtx; })
1285
1286#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1287({ __typeof (RTX) const _rtx = (RTX); \
1288 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1289 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1290 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1291 __FUNCTION__); \
1292 _rtx; })
1293
1294#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1295({ __typeof (RTX) const _rtx = (RTX); \
1296 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1297 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1298 && GET_CODE (_rtx) != C5) \
1299 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1300 __FUNCTION__); \
1301 _rtx; })
1302
1303#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1304 __extension__ \
1305({ __typeof (RTX) const _rtx = (RTX); \
1306 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1307 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1308 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1309 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1310 __FUNCTION__); \
1311 _rtx; })
1312
1313#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1314 __extension__ \
1315({ __typeof (RTX) const _rtx = (RTX); \
1316 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1317 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1318 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1319 && GET_CODE (_rtx) != C7) \
1320 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1321 __FUNCTION__); \
1322 _rtx; })
1323
1324#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1325 __extension__ \
1326({ __typeof (RTX) const _rtx = (RTX); \
1327 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1328 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1329 __FUNCTION__); \
1330 _rtx; })
1331
1332extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1333 int, const char *)
1334 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1335 ;
1336
1337#else /* not ENABLE_RTL_FLAG_CHECKING */
1339#define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1340#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1341#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1342#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1343#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1344#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1345#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1346#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1347#endif
1349#define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1350#define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1351#define XLOC(RTX, N) (RTL_CHECK1 (RTX, N, 'L').rt_loc)
1352#define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1353#define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1354#define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1355#define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1356#define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1357#define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1358#define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1359#define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1361#define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1362#define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1363
1364/* These are like XINT, etc. except that they expect a '0' field instead
1365 of the normal type code. */
1367#define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1368#define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1369#define X0LOC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_loc)
1370#define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1371#define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1372#define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1373#define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1374#define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1375#define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1376#define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1377#define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1378#define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1379#define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1381/* Access a '0' field with any type. */
1382#define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1384#define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1385#define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1386#define XCLOC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_loc)
1387#define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1388#define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1389#define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1390#define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1391#define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1392#define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1393#define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1394#define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1395#define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1397#define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1398#define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1400#define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1401#define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1402
1403
1404/* Methods of rtx_expr_list. */
1405
1406inline rtx_expr_list *rtx_expr_list::next () const
1407{
1408 rtx tmp = XEXP (this, 1);
1409 return safe_as_a <rtx_expr_list *> (tmp);
1411
1412inline rtx rtx_expr_list::element () const
1413{
1414 return XEXP (this, 0);
1415}
1416
1417/* Methods of rtx_insn_list. */
1418
1419inline rtx_insn_list *rtx_insn_list::next () const
1420{
1421 rtx tmp = XEXP (this, 1);
1422 return safe_as_a <rtx_insn_list *> (tmp);
1424
1425inline rtx_insn *rtx_insn_list::insn () const
1426{
1427 rtx tmp = XEXP (this, 0);
1428 return safe_as_a <rtx_insn *> (tmp);
1429}
1430
1431/* Methods of rtx_sequence. */
1433inline int rtx_sequence::len () const
1434{
1435 return XVECLEN (this, 0);
1437
1438inline rtx rtx_sequence::element (int index) const
1439{
1440 return XVECEXP (this, 0, index);
1442
1443inline rtx_insn *rtx_sequence::insn (int index) const
1444{
1445 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1446}
1447
1448/* ACCESS MACROS for particular fields of insns. */
1449
1450/* Holds a unique number for each insn.
1451 These are not necessarily sequentially increasing. */
1452inline int INSN_UID (const_rtx insn)
1453{
1454 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1455 (insn))->u2.insn_uid;
1456}
1457inline int& INSN_UID (rtx insn)
1458{
1459 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1460 (insn))->u2.insn_uid;
1461}
1462
1463/* Chain insns together in sequence. */
1464
1465/* For now these are split in two: an rvalue form:
1466 PREV_INSN/NEXT_INSN
1467 and an lvalue form:
1468 SET_NEXT_INSN/SET_PREV_INSN. */
1469
1470inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1471{
1472 rtx prev = XEXP (insn, 0);
1473 return safe_as_a <rtx_insn *> (prev);
1475
1476inline rtx& SET_PREV_INSN (rtx_insn *insn)
1477{
1478 return XEXP (insn, 0);
1480
1481inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1482{
1483 rtx next = XEXP (insn, 1);
1484 return safe_as_a <rtx_insn *> (next);
1486
1487inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1488{
1489 return XEXP (insn, 1);
1491
1493{
1494 return XBBDEF (insn, 2);
1495}
1496
1497inline basic_block& BLOCK_FOR_INSN (rtx insn)
1498{
1499 return XBBDEF (insn, 2);
1501
1502inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1503{
1504 BLOCK_FOR_INSN (insn) = bb;
1505}
1507/* The body of an insn. */
1508inline rtx PATTERN (const_rtx insn)
1509{
1510 return XEXP (insn, 3);
1511}
1512
1513inline rtx& PATTERN (rtx insn)
1514{
1515 return XEXP (insn, 3);
1517
1518inline location_t INSN_LOCATION (const rtx_insn *insn)
1519{
1520 return XLOC (insn, 4);
1522
1523inline location_t& INSN_LOCATION (rtx_insn *insn)
1524{
1525 return XLOC (insn, 4);
1527
1528inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1529{
1531}
1533/* LOCATION of an RTX if relevant. */
1534#define RTL_LOCATION(X) (INSN_P (X) ? \
1535 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1536 : UNKNOWN_LOCATION)
1537
1538/* Code number of instruction, from when it was recognized.
1539 -1 means this instruction has not been recognized yet. */
1540#define INSN_CODE(INSN) XINT (INSN, 5)
1541
1543{
1544 rtx pat = PATTERN (this);
1545 if (GET_CODE (pat) == ADDR_VEC)
1546 return XVEC (pat, 0);
1547 else
1548 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1549}
1550
1551/* Return the mode of the data in the table, which is always a scalar
1552 integer. */
1557 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1558}
1559
1560/* If LABEL is followed by a jump table, return the table, otherwise
1561 return null. */
1563inline rtx_jump_table_data *
1565{
1568
1569#define RTX_FRAME_RELATED_P(RTX) \
1570 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1571 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1573/* 1 if JUMP RTX is a crossing jump. */
1574#define CROSSING_JUMP_P(RTX) \
1575 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1576
1577/* 1 if RTX is a call to a const function. Built from ECF_CONST and
1578 TREE_READONLY. */
1579#define RTL_CONST_CALL_P(RTX) \
1580 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1581
1582/* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1583 DECL_PURE_P. */
1584#define RTL_PURE_CALL_P(RTX) \
1585 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1587/* 1 if RTX is a call to a const or pure function. */
1588#define RTL_CONST_OR_PURE_CALL_P(RTX) \
1589 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1590
1591/* 1 if RTX is a call to a looping const or pure function. Built from
1592 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1593#define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1594 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1596/* 1 if RTX is a call_insn for a sibling call. */
1597#define SIBLING_CALL_P(RTX) \
1598 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1600/* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1601#define INSN_ANNULLED_BRANCH_P(RTX) \
1602 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1603
1604/* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1605 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1606 executed if the branch is taken. For annulled branches with this bit
1607 clear, the insn should be executed only if the branch is not taken. */
1608#define INSN_FROM_TARGET_P(RTX) \
1609 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1610 CALL_INSN)->in_struct)
1611
1612/* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1613 See the comments for ADDR_DIFF_VEC in rtl.def. */
1614#define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1615
1616/* In a VALUE, the value cselib has assigned to RTX.
1617 This is a "struct cselib_val", see cselib.h. */
1618#define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1619
1620/* Holds a list of notes on what this insn does to various REGs.
1621 It is a chain of EXPR_LIST rtx's, where the second operand is the
1622 chain pointer and the first operand is the REG being described.
1623 The mode field of the EXPR_LIST contains not a real machine mode
1624 but a value from enum reg_note. */
1625#define REG_NOTES(INSN) XEXP(INSN, 6)
1626
1627/* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1628 question. */
1629#define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1630
1632{
1633#define DEF_REG_NOTE(NAME) NAME,
1634#include "reg-notes.def"
1635#undef DEF_REG_NOTE
1637};
1639/* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1640#define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1641#define PUT_REG_NOTE_KIND(LINK, KIND) \
1642 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1643
1644/* Names for REG_NOTE's in EXPR_LIST insn's. */
1646extern const char * const reg_note_name[];
1647#define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1648
1649/* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1650 USE, CLOBBER and SET expressions.
1651 USE expressions list the registers filled with arguments that
1652 are passed to the function.
1653 CLOBBER expressions document the registers explicitly clobbered
1654 by this CALL_INSN.
1655 SET expressions say that the return value of the call (the SET_DEST)
1656 is equivalent to a value available before the call (the SET_SRC).
1657 This kind of SET is used when the return value is predictable in
1658 advance. It is purely an optimisation hint; unlike USEs and CLOBBERs,
1659 it does not affect register liveness.
1661 Pseudo registers cannot be mentioned in this list. */
1662#define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1664/* The label-number of a code-label. The assembler label
1665 is made from `L' and the label-number printed in decimal.
1666 Label numbers are unique in a compilation. */
1667#define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1668
1669/* In a NOTE that is a line number, this is a string for the file name that the
1670 line is in. We use the same field to record block numbers temporarily in
1671 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1672 between ints and pointers if we use a different macro for the block number.)
1673 */
1675/* Opaque data. */
1676#define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1677#define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1678#define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1679#define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1680#define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1681#define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1682#define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1683#define NOTE_MARKER_LOCATION(INSN) XCLOC (INSN, 3, NOTE)
1684#define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1685#define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1686
1687/* In a NOTE that is a line number, this is the line number.
1688 Other kinds of NOTEs are identified by negative numbers here. */
1689#define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1691/* Nonzero if INSN is a note marking the beginning of a basic block. */
1692#define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1693 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1694
1695/* Nonzero if INSN is a debug nonbind marker note,
1696 for which NOTE_MARKER_LOCATION can be used. */
1697#define NOTE_MARKER_P(INSN) \
1698 (NOTE_P (INSN) && \
1699 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1700 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1702/* Variable declaration and the location of a variable. */
1703#define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1704#define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1705
1706/* Initialization status of the variable in the location. Status
1707 can be unknown, uninitialized or initialized. See enumeration
1708 type below. */
1709#define PAT_VAR_LOCATION_STATUS(PAT) \
1710 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1711 ->u2.var_location_status)
1713/* Accessors for a NOTE_INSN_VAR_LOCATION. */
1714#define NOTE_VAR_LOCATION_DECL(NOTE) \
1715 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1716#define NOTE_VAR_LOCATION_LOC(NOTE) \
1717 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1718#define NOTE_VAR_LOCATION_STATUS(NOTE) \
1719 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1720
1721/* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1722 location/value tracking annotation. */
1723#define DEBUG_BIND_INSN_P(INSN) \
1724 (DEBUG_INSN_P (INSN) \
1725 && (GET_CODE (PATTERN (INSN)) \
1726 == VAR_LOCATION))
1727/* Evaluate to TRUE if INSN is a debug insn that denotes a program
1728 source location marker. */
1729#define DEBUG_MARKER_INSN_P(INSN) \
1730 (DEBUG_INSN_P (INSN) \
1731 && (GET_CODE (PATTERN (INSN)) \
1732 != VAR_LOCATION))
1733/* Evaluate to the marker kind. */
1734#define INSN_DEBUG_MARKER_KIND(INSN) \
1735 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1736 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1737 ? NOTE_INSN_BEGIN_STMT \
1738 : GET_MODE (PATTERN (INSN)) == BLKmode \
1739 ? NOTE_INSN_INLINE_ENTRY \
1740 : (enum insn_note)-1) \
1741 : (enum insn_note)-1)
1742/* Create patterns for debug markers. These and the above abstract
1743 the representation, so that it's easier to get rid of the abuse of
1744 the mode to hold the marker kind. Other marker types are
1745 envisioned, so a single bit flag won't do; maybe separate RTL codes
1746 wouldn't be a problem. */
1747#define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1748 gen_rtx_DEBUG_MARKER (VOIDmode)
1749#define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1750 gen_rtx_DEBUG_MARKER (BLKmode)
1752/* The VAR_LOCATION rtx in a DEBUG_INSN. */
1753#define INSN_VAR_LOCATION(INSN) \
1754 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1755/* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1756#define INSN_VAR_LOCATION_PTR(INSN) \
1757 (&PATTERN (INSN))
1759/* Accessors for a tree-expanded var location debug insn. */
1760#define INSN_VAR_LOCATION_DECL(INSN) \
1761 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1762#define INSN_VAR_LOCATION_LOC(INSN) \
1763 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1764#define INSN_VAR_LOCATION_STATUS(INSN) \
1765 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1766
1767/* Expand to the RTL that denotes an unknown variable location in a
1768 DEBUG_INSN. */
1769#define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1771/* Determine whether X is such an unknown location. */
1772#define VAR_LOC_UNKNOWN_P(X) \
1773 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1774
1775/* 1 if RTX is emitted after a call, but it should take effect before
1776 the call returns. */
1777#define NOTE_DURING_CALL_P(RTX) \
1778 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1780/* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1781#define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1783/* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1784#define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1786/* PARM_DECL DEBUG_PARAMETER_REF references. */
1787#define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1788
1789/* Codes that appear in the NOTE_KIND field for kinds of notes
1790 that are not line numbers. These codes are all negative.
1791
1792 Notice that we do not try to use zero here for any of
1793 the special note codes because sometimes the source line
1794 actually can be zero! This happens (for example) when we
1795 are generating code for the per-translation-unit constructor
1796 and destructor routines for some C++ translation unit. */
1797
1799{
1800#define DEF_INSN_NOTE(NAME) NAME,
1801#include "insn-notes.def"
1802#undef DEF_INSN_NOTE
1803
1805};
1806
1807/* Names for NOTE insn's other than line numbers. */
1809extern const char * const note_insn_name[NOTE_INSN_MAX];
1810#define GET_NOTE_INSN_NAME(NOTE_CODE) \
1811 (note_insn_name[(NOTE_CODE)])
1812
1813/* The name of a label, in case it corresponds to an explicit label
1814 in the input source code. */
1815#define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1816
1817/* In jump.cc, each label contains a count of the number
1818 of LABEL_REFs that point at it, so unused labels can be deleted. */
1819#define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1820
1821/* Labels carry a two-bit field composed of the ->jump and ->call
1822 bits. This field indicates whether the label is an alternate
1823 entry point, and if so, what kind. */
1826 LABEL_NORMAL = 0, /* ordinary label */
1827 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1828 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1829 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1831
1832#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1833
1834/* Retrieve the kind of LABEL. */
1835#define LABEL_KIND(LABEL) __extension__ \
1836({ __typeof (LABEL) const _label = (LABEL); \
1837 if (! LABEL_P (_label)) \
1838 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1839 __FUNCTION__); \
1840 (enum label_kind) ((_label->jump << 1) | _label->call); })
1841
1842/* Set the kind of LABEL. */
1843#define SET_LABEL_KIND(LABEL, KIND) do { \
1844 __typeof (LABEL) const _label = (LABEL); \
1845 const unsigned int _kind = (KIND); \
1846 if (! LABEL_P (_label)) \
1847 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1848 __FUNCTION__); \
1849 _label->jump = ((_kind >> 1) & 1); \
1850 _label->call = (_kind & 1); \
1851} while (0)
1852
1853#else
1855/* Retrieve the kind of LABEL. */
1856#define LABEL_KIND(LABEL) \
1857 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1859/* Set the kind of LABEL. */
1860#define SET_LABEL_KIND(LABEL, KIND) do { \
1861 rtx const _label = (LABEL); \
1862 const unsigned int _kind = (KIND); \
1863 _label->jump = ((_kind >> 1) & 1); \
1864 _label->call = (_kind & 1); \
1865} while (0)
1866
1867#endif /* rtl flag checking */
1868
1869#define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1870
1871/* In jump.cc, each JUMP_INSN can point to a label that it can jump to,
1872 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1873 be decremented and possibly the label can be deleted. */
1874#define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1875
1876inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1877{
1878 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1879}
1880
1881/* Methods of rtx_jump_insn. */
1882
1883inline rtx rtx_jump_insn::jump_label () const
1884{
1885 return JUMP_LABEL (this);
1887
1889{
1892
1894{
1895 JUMP_LABEL (this) = target;
1896}
1897
1898/* Once basic blocks are found, each CODE_LABEL starts a chain that
1899 goes through all the LABEL_REFs that jump to that label. The chain
1900 eventually winds up at the CODE_LABEL: it is circular. */
1901#define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1903/* Get the label that a LABEL_REF references. */
1904inline rtx_insn *
1906{
1907 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1908}
1909
1910/* Set the label that LABEL_REF ref refers to. */
1912inline void
1913set_label_ref_label (rtx ref, rtx_insn *label)
1914{
1915 XCEXP (ref, 0, LABEL_REF) = label;
1916}
1917
1918/* For a REG rtx, REGNO extracts the register number. REGNO can only
1919 be used on RHS. Use SET_REGNO to change the value. */
1920#define REGNO(RTX) (rhs_regno(RTX))
1921#define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1922
1923/* Return the number of consecutive registers in a REG. This is always
1924 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1925 hard registers. */
1926#define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1927
1928/* ORIGINAL_REGNO holds the number the register originally had; for a
1929 pseudo register turned into a hard reg this will hold the old pseudo
1930 register number. */
1931#define ORIGINAL_REGNO(RTX) \
1932 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1933
1934/* Force the REGNO macro to only be used on the lhs. */
1935inline unsigned int
1937{
1938 return REG_CHECK (x)->regno;
1939}
1940
1941/* Return the final register in REG X plus one. */
1942inline unsigned int
1944{
1945 return REGNO (x) + REG_NREGS (x);
1946}
1947
1948/* Change the REGNO and REG_NREGS of REG X to the specified values,
1949 bypassing the df machinery. */
1950inline void
1951set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1952{
1953 reg_info *reg = REG_CHECK (x);
1954 reg->regno = regno;
1955 reg->nregs = nregs;
1956}
1957
1958/* 1 if RTX is a reg or parallel that is the current function's return
1959 value. */
1960#define REG_FUNCTION_VALUE_P(RTX) \
1961 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1963/* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1964#define REG_USERVAR_P(RTX) \
1965 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1967/* 1 if RTX is a reg that holds a pointer value. */
1968#define REG_POINTER(RTX) \
1969 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1971/* 1 if RTX is a mem that holds a pointer value. */
1972#define MEM_POINTER(RTX) \
1973 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1975/* 1 if the given register REG corresponds to a hard register. */
1976#define HARD_REGISTER_P(REG) HARD_REGISTER_NUM_P (REGNO (REG))
1978/* 1 if the given register number REG_NO corresponds to a hard register. */
1979#define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1981/* 1 if the given register REG corresponds to a virtual register. */
1982#define VIRTUAL_REGISTER_P(REG) VIRTUAL_REGISTER_NUM_P (REGNO (REG))
1984/* 1 if the given register number REG_NO corresponds to a virtual register. */
1985#define VIRTUAL_REGISTER_NUM_P(REG_NO) \
1986 IN_RANGE (REG_NO, FIRST_VIRTUAL_REGISTER, LAST_VIRTUAL_REGISTER)
1988/* For a CONST_INT rtx, INTVAL extracts the integer. */
1989#define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1990#define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1991
1992/* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1993 elements actually needed to represent the constant.
1994 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1995 significant HOST_WIDE_INT. */
1996#define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1997#define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1998#define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1999
2000/* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
2001 individual coefficients, in the form of a trailing_wide_ints structure. */
2002#define CONST_POLY_INT_COEFFS(RTX) \
2003 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
2004 CONST_POLY_INT)->u.cpi.coeffs)
2005
2006/* For a CONST_DOUBLE:
2007#if TARGET_SUPPORTS_WIDE_INT == 0
2008 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
2009 low-order word and ..._HIGH the high-order.
2010#endif
2011 For a float, there is a REAL_VALUE_TYPE structure, and
2012 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
2013#define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
2014#define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
2015#define CONST_DOUBLE_REAL_VALUE(r) \
2016 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
2017
2018#define CONST_FIXED_VALUE(r) \
2019 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
2020#define CONST_FIXED_VALUE_HIGH(r) \
2021 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
2022#define CONST_FIXED_VALUE_LOW(r) \
2023 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2025/* For a CONST_VECTOR, return element #n. */
2026#define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2028/* See rtl.texi for a description of these macros. */
2029#define CONST_VECTOR_NPATTERNS(RTX) \
2030 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2031 ->u2.const_vector.npatterns)
2032
2033#define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2034 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2035 ->u2.const_vector.nelts_per_pattern)
2036
2037#define CONST_VECTOR_DUPLICATE_P(RTX) \
2038 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2039
2040#define CONST_VECTOR_STEPPED_P(RTX) \
2041 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2042
2043#define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2044
2045/* Return the number of elements encoded directly in a CONST_VECTOR. */
2047inline unsigned int
2049{
2051}
2053/* For a CONST_VECTOR, return the number of elements in a vector. */
2054#define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2055
2056/* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2057 SUBREG_BYTE extracts the byte-number. */
2059#define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2060#define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2061
2062/* in rtlanal.cc */
2063/* Return the right cost to give to an operation
2064 to make the cost of the corresponding register-to-register instruction
2065 N times that of a fast register-to-register instruction. */
2066#define COSTS_N_INSNS(N) ((N) * 4)
2067
2068/* Maximum cost of an rtl expression. This value has the special meaning
2069 not to use an rtx with this cost under any circumstances. */
2070#define MAX_COST INT_MAX
2071
2072/* Return true if CODE always has VOIDmode. */
2074inline bool
2075always_void_p (enum rtx_code code)
2076{
2077 return code == SET;
2078}
2079
2080/* A structure to hold all available cost information about an rtl
2081 expression. */
2084 int speed;
2085 int size;
2086};
2087
2088/* Initialize a full_rtx_costs structure C to the maximum cost. */
2089inline void
2091{
2092 c->speed = MAX_COST;
2093 c->size = MAX_COST;
2094}
2095
2096/* Initialize a full_rtx_costs structure C to zero cost. */
2097inline void
2099{
2100 c->speed = 0;
2101 c->size = 0;
2102}
2103
2104/* Compare two full_rtx_costs structures A and B, returning true
2105 if A < B when optimizing for speed. */
2106inline bool
2107costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2108 bool speed)
2109{
2110 if (speed)
2111 return (a->speed < b->speed
2112 || (a->speed == b->speed && a->size < b->size));
2113 else
2114 return (a->size < b->size
2115 || (a->size == b->size && a->speed < b->speed));
2116}
2117
2118/* Increase both members of the full_rtx_costs structure C by the
2119 cost of N insns. */
2120inline void
2121costs_add_n_insns (struct full_rtx_costs *c, int n)
2122{
2123 c->speed += COSTS_N_INSNS (n);
2124 c->size += COSTS_N_INSNS (n);
2125}
2126
2127/* Describes the shape of a subreg:
2128
2129 inner_mode == the mode of the SUBREG_REG
2130 offset == the SUBREG_BYTE
2131 outer_mode == the mode of the SUBREG itself. */
2132class subreg_shape {
2133public:
2134 subreg_shape (machine_mode, poly_uint16, machine_mode);
2135 bool operator == (const subreg_shape &) const;
2136 bool operator != (const subreg_shape &) const;
2137 unsigned HOST_WIDE_INT unique_id () const;
2139 machine_mode inner_mode;
2141 machine_mode outer_mode;
2142};
2144inline
2145subreg_shape::subreg_shape (machine_mode inner_mode_in,
2146 poly_uint16 offset_in,
2147 machine_mode outer_mode_in)
2148 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2149{}
2151inline bool
2152subreg_shape::operator == (const subreg_shape &other) const
2153{
2154 return (inner_mode == other.inner_mode
2155 && known_eq (offset, other.offset)
2156 && outer_mode == other.outer_mode);
2157}
2159inline bool
2160subreg_shape::operator != (const subreg_shape &other) const
2161{
2162 return !operator == (other);
2163}
2164
2165/* Return an integer that uniquely identifies this shape. Structures
2166 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2167 current mode is anywhere near being 65536 bytes in size, so the
2168 id comfortably fits in an int. */
2170inline unsigned HOST_WIDE_INT
2172{
2173 { STATIC_ASSERT (MAX_MACHINE_MODE <= (1 << MACHINE_MODE_BITSIZE)); }
2175 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2176 int res = (int) inner_mode + ((int) outer_mode << 8);
2177 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2178 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2179 return res;
2180}
2181
2182/* Return the shape of a SUBREG rtx. */
2184inline subreg_shape
2186{
2187 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2188 SUBREG_BYTE (x), GET_MODE (x));
2189}
2190
2191/* Information about an address. This structure is supposed to be able
2192 to represent all supported target addresses. Please extend it if it
2193 is not yet general enough. */
2194struct address_info {
2195 /* The mode of the value being addressed, or VOIDmode if this is
2196 a load-address operation with no known address mode. */
2197 machine_mode mode;
2199 /* The address space. */
2202 /* True if this is an RTX_AUTOINC address. */
2203 bool autoinc_p;
2205 /* A pointer to the top-level address. */
2206 rtx *outer;
2207
2208 /* A pointer to the inner address, after all address mutations
2209 have been stripped from the top-level address. It can be one
2210 of the following:
2211
2212 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2213
2214 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2215 points to the step value, depending on whether the step is variable
2216 or constant respectively. SEGMENT is null.
2217
2218 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2219 with null fields evaluating to 0. */
2220 rtx *inner;
2221
2222 /* Components that make up *INNER. Each one may be null or nonnull.
2223 When nonnull, their meanings are as follows:
2224
2225 - *SEGMENT is the "segment" of memory to which the address refers.
2226 This value is entirely target-specific and is only called a "segment"
2227 because that's its most typical use. It contains exactly one UNSPEC,
2228 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2229 reloading.
2230
2231 - *BASE is a variable expression representing a base address.
2232 It contains exactly one "term", pointed to by BASE_TERM.
2233 This term can be one of the following:
2234
2235 (1) a REG, or a SUBREG of a REG
2236 (2) an eliminated REG (a PLUS of (1) and a constant)
2237 (3) a MEM, or a SUBREG of a MEM
2238 (4) a SCRATCH
2239
2240 This term is the one that base_reg_class constrains.
2241
2242 - *INDEX is a variable expression representing an index value.
2243 It may be a scaled expression, such as a MULT. It has exactly
2244 one "term", pointed to by INDEX_TERM. The possible terms are
2245 the same as for BASE. This term is the one that index_reg_class
2246 constrains.
2247
2248 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2249 unmutated RTX_CONST_OBJ. */
2252 rtx *index;
2257 rtx *index_term;
2258 rtx *disp_term;
2259
2260 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2261 of BASE_TERM, otherwise it is null. */
2262 rtx *base_term2;
2263
2264 /* ADDRESS if this structure describes an address operand, MEM if
2265 it describes a MEM address. */
2268 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2270};
2271
2272/* This is used to bundle an rtx and a mode together so that the pair
2273 can be used with the wi:: routines. If we ever put modes into rtx
2274 integer constants, this should go away and then just pass an rtx in. */
2275typedef std::pair <rtx, machine_mode> rtx_mode_t;
2276
2277namespace wi
2279 template <>
2282 static const enum precision_type precision_type = VAR_PRECISION;
2283 static const bool host_dependent_precision = false;
2284 /* This ought to be true, except for the special case that BImode
2285 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2286 static const bool is_sign_extended = false;
2287 static const bool needs_write_val_arg = false;
2288 static unsigned int get_precision (const rtx_mode_t &);
2289 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2290 const rtx_mode_t &);
2291 };
2292}
2294inline unsigned int
2296{
2297 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2298}
2300inline wi::storage_ref
2302 unsigned int precision,
2303 const rtx_mode_t &x)
2304{
2306 switch (GET_CODE (x.first))
2307 {
2308 case CONST_INT:
2310 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2311 targets is 1 rather than -1. */
2312 gcc_checking_assert (INTVAL (x.first)
2313 == sext_hwi (INTVAL (x.first), precision)
2314 || (x.second == BImode && INTVAL (x.first) == 1));
2315
2316 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2317
2318 case CONST_WIDE_INT:
2319 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2320 CONST_WIDE_INT_NUNITS (x.first), precision);
2321
2322#if TARGET_SUPPORTS_WIDE_INT == 0
2323 case CONST_DOUBLE:
2324 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2325#endif
2326
2327 default:
2328 gcc_unreachable ();
2329 }
2330}
2331
2332namespace wi
2333{
2334 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2335 wide_int min_value (machine_mode, signop);
2336 wide_int max_value (machine_mode, signop);
2337}
2339inline wi::hwi_with_prec
2340wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2341{
2342 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2343}
2344
2345/* Produce the smallest number that is represented in MODE. The precision
2346 is taken from MODE and the sign from SGN. */
2347inline wide_int
2348wi::min_value (machine_mode mode, signop sgn)
2349{
2350 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2351}
2352
2353/* Produce the largest number that is represented in MODE. The precision
2354 is taken from MODE and the sign from SGN. */
2355inline wide_int
2356wi::max_value (machine_mode mode, signop sgn)
2357{
2358 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2359}
2360
2361namespace wi
2362{
2364 generic_wide_int <wide_int_ref_storage <false, false> > >
2367}
2368
2369/* Return the value of a CONST_POLY_INT in its native precision. */
2373{
2375 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2376 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2377 return res;
2378}
2379
2380/* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2381 can then be extracted using wi::to_poly_wide. */
2383inline bool
2385{
2386 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2387}
2388
2389/* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2390 MODE is the mode of X. */
2393wi::to_poly_wide (const_rtx x, machine_mode mode)
2394{
2395 if (CONST_POLY_INT_P (x))
2396 return const_poly_int_value (x);
2397 return rtx_mode_t (const_cast<rtx> (x), mode);
2398}
2399
2400/* Return the value of X as a poly_int64. */
2402inline poly_int64
2404{
2405 if (CONST_POLY_INT_P (x))
2406 {
2407 poly_int64 res;
2408 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2409 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2410 return res;
2411 }
2412 return INTVAL (x);
2413}
2414
2415/* Return true if arbitrary value X is an integer constant that can
2416 be represented as a poly_int64. Store the value in *RES if so,
2417 otherwise leave it unmodified. */
2419inline bool
2421{
2422 if (CONST_INT_P (x))
2423 {
2424 *res = INTVAL (x);
2425 return true;
2426 }
2427 if (CONST_POLY_INT_P (x))
2428 {
2429 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2431 return false;
2432 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2433 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2434 return true;
2435 }
2436 return false;
2437}
2438
2439extern void init_rtlanal (void);
2440extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2441extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2442extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2443 struct full_rtx_costs *);
2444extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
2445 unsigned int, unsigned int);
2446extern rtx native_decode_rtx (machine_mode, const vec<target_unit> &,
2447 unsigned int);
2448extern rtx native_decode_vector_rtx (machine_mode, const vec<target_unit> &,
2449 unsigned int, unsigned int, unsigned int);
2453 poly_uint64);
2454extern bool read_modify_subreg_p (const_rtx);
2455
2456/* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
2457 bit offset at which the subreg begins (counting from the least significant
2458 bit of the operand). */
2460inline poly_uint64
2461subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
2462 poly_uint64 subreg_byte)
2463{
2464 return subreg_size_lsb (GET_MODE_SIZE (outer_mode),
2465 GET_MODE_SIZE (inner_mode), subreg_byte);
2466}
2467
2468/* Return the subreg byte offset for a subreg whose outer mode is
2469 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2470 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2471 the inner value. This is the inverse of subreg_lsb_1 (which converts
2472 byte offsets to bit shifts). */
2474inline poly_uint64
2475subreg_offset_from_lsb (machine_mode outer_mode,
2476 machine_mode inner_mode,
2477 poly_uint64 lsb_shift)
2478{
2479 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2480 GET_MODE_SIZE (inner_mode), lsb_shift);
2481}
2482
2483extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2484 poly_uint64, machine_mode);
2485extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2486 poly_uint64, machine_mode);
2487extern unsigned int subreg_regno (const_rtx);
2488extern int simplify_subreg_regno (unsigned int, machine_mode,
2489 poly_uint64, machine_mode);
2490extern int lowpart_subreg_regno (unsigned int, machine_mode,
2491 machine_mode);
2492extern unsigned int subreg_nregs (const_rtx);
2493extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2494extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2495extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2496extern bool constant_pool_constant_p (rtx);
2497extern bool truncated_to_mode (machine_mode, const_rtx);
2498extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2499extern void split_double (rtx, rtx *, rtx *);
2500extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2501extern void decompose_address (struct address_info *, rtx *,
2502 machine_mode, addr_space_t, enum rtx_code);
2503extern void decompose_lea_address (struct address_info *, rtx *);
2504extern void decompose_mem_address (struct address_info *, rtx);
2505extern void update_address (struct address_info *);
2506extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2507extern enum rtx_code get_index_code (const struct address_info *);
2508
2509/* 1 if RTX is a subreg containing a reg that is already known to be
2510 sign- or zero-extended from the mode of the subreg to the mode of
2511 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2512 extension.
2513
2514 When used as a LHS, is means that this extension must be done
2515 when assigning to SUBREG_REG. */
2516
2517#define SUBREG_PROMOTED_VAR_P(RTX) \
2518 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2519
2520/* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2521 this gives the necessary extensions:
2522 0 - signed (SPR_SIGNED)
2523 1 - normal unsigned (SPR_UNSIGNED)
2524 2 - value is both sign and unsign extended for mode
2525 (SPR_SIGNED_AND_UNSIGNED).
2526 -1 - pointer unsigned, which most often can be handled like unsigned
2527 extension, except for generating instructions where we need to
2528 emit special code (ptr_extend insns) on some architectures
2529 (SPR_POINTER). */
2531const int SRP_POINTER = -1;
2532const int SRP_SIGNED = 0;
2533const int SRP_UNSIGNED = 1;
2534const int SRP_SIGNED_AND_UNSIGNED = 2;
2536/* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2537#define SUBREG_PROMOTED_SET(RTX, VAL) \
2538do { \
2539 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2540 (RTX), SUBREG); \
2541 switch (VAL) \
2542 { \
2543 case SRP_POINTER: \
2544 _rtx->volatil = 0; \
2545 _rtx->unchanging = 0; \
2546 break; \
2547 case SRP_SIGNED: \
2548 _rtx->volatil = 0; \
2549 _rtx->unchanging = 1; \
2550 break; \
2551 case SRP_UNSIGNED: \
2552 _rtx->volatil = 1; \
2553 _rtx->unchanging = 0; \
2554 break; \
2555 case SRP_SIGNED_AND_UNSIGNED: \
2556 _rtx->volatil = 1; \
2557 _rtx->unchanging = 1; \
2558 break; \
2559 } \
2560} while (0)
2561
2562/* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2563 including SRP_SIGNED_AND_UNSIGNED if promoted for
2564 both signed and unsigned. */
2565#define SUBREG_PROMOTED_GET(RTX) \
2566 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2567 + (RTX)->unchanging - 1)
2569/* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2570#define SUBREG_PROMOTED_SIGN(RTX) \
2571 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2572 : (RTX)->unchanging - 1)
2573
2574/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2575 for SIGNED type. */
2576#define SUBREG_PROMOTED_SIGNED_P(RTX) \
2577 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2578
2579/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2580 for UNSIGNED type. */
2581#define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2582 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2584/* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2585#define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2586((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2587 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2588 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2590/* True if the REG is the static chain register for some CALL_INSN. */
2591#define STATIC_CHAIN_REG_P(RTX) \
2592 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2593
2594/* True if the subreg was generated by LRA for reload insns. Such
2595 subregs are valid only during LRA. */
2596#define LRA_SUBREG_P(RTX) \
2597 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2598
2599/* Access various components of an ASM_OPERANDS rtx. */
2601#define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2602#define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2603#define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2604#define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2605#define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2606#define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2607#define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2608#define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2609 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2610#define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2611 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2612#define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2613 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2614#define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2615#define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2616#define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2617#define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCLOC (RTX, 6, ASM_OPERANDS)
2618#define ASM_INPUT_SOURCE_LOCATION(RTX) XCLOC (RTX, 1, ASM_INPUT)
2620/* 1 if RTX is a mem that is statically allocated in read-only memory. */
2621#define MEM_READONLY_P(RTX) \
2622 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2623
2624/* 1 if RTX is a mem and we should keep the alias set for this mem
2625 unchanged when we access a component. Set to 1, or example, when we
2626 are already in a non-addressable component of an aggregate. */
2627#define MEM_KEEP_ALIAS_SET_P(RTX) \
2628 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2630/* 1 if RTX is a mem or asm_operand for a volatile reference. */
2631#define MEM_VOLATILE_P(RTX) \
2632 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2633 ASM_INPUT)->volatil)
2635/* 1 if RTX is a mem that cannot trap. */
2636#define MEM_NOTRAP_P(RTX) \
2637 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2638
2639/* The memory attribute block. We provide access macros for each value
2640 in the block and provide defaults if none specified. */
2641#define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2642
2643/* The register attribute block. We provide access macros for each value
2644 in the block and provide defaults if none specified. */
2645#define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2646
2647#ifndef GENERATOR_FILE
2648/* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2649 set, and may alias anything. Otherwise, the MEM can only alias
2650 MEMs in a conflicting alias set. This value is set in a
2651 language-dependent manner in the front-end, and should not be
2652 altered in the back-end. These set numbers are tested with
2653 alias_sets_conflict_p. */
2654#define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2655
2656/* For a MEM rtx, the decl it is known to refer to, if it is known to
2657 refer to part of a DECL. It may also be a COMPONENT_REF. */
2658#define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2660/* For a MEM rtx, true if its MEM_OFFSET is known. */
2661#define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2663/* For a MEM rtx, the offset from the start of MEM_EXPR. */
2664#define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2666/* For a MEM rtx, the address space. */
2667#define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2669/* For a MEM rtx, true if its MEM_SIZE is known. */
2670#define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2672/* For a MEM rtx, the size in bytes of the MEM. */
2673#define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2674
2675/* For a MEM rtx, the alignment in bits. We can use the alignment of the
2676 mode as a default when STRICT_ALIGNMENT, but not if not. */
2677#define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2678#else
2679#define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2680#endif
2681
2682/* For a REG rtx, the decl it is known to refer to, if it is known to
2683 refer to part of a DECL. */
2684#define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2685
2686/* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2687 HOST_WIDE_INT. */
2688#define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2690/* Copy the attributes that apply to memory locations from RHS to LHS. */
2691#define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2692 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2693 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2694 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2695 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2696 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2697 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2698
2699/* 1 if RTX is a label_ref for a nonlocal label. */
2700/* Likewise in an expr_list for a REG_LABEL_OPERAND or
2701 REG_LABEL_TARGET note. */
2702#define LABEL_REF_NONLOCAL_P(RTX) \
2703 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2705/* 1 if RTX is a code_label that should always be considered to be needed. */
2706#define LABEL_PRESERVE_P(RTX) \
2707 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2708
2709/* During sched, 1 if RTX is an insn that must be scheduled together
2710 with the preceding insn. */
2711#define SCHED_GROUP_P(RTX) \
2712 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2713 JUMP_INSN, CALL_INSN)->in_struct)
2714
2715/* For a SET rtx, SET_DEST is the place that is set
2716 and SET_SRC is the value it is set to. */
2717#define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2718#define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2719#define SET_IS_RETURN_P(RTX) \
2720 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2722/* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2723#define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2724#define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2725
2726/* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2727 conditionally executing the code on, COND_EXEC_CODE is the code
2728 to execute if the condition is true. */
2729#define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2730#define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2731
2732/* 1 if RTX is a symbol_ref that addresses this function's rtl
2733 constants pool. */
2734#define CONSTANT_POOL_ADDRESS_P(RTX) \
2735 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2736
2737/* 1 if RTX is a symbol_ref that addresses a value in the file's
2738 tree constant pool. This information is private to varasm.cc. */
2739#define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2740 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2741 (RTX), SYMBOL_REF)->frame_related)
2743/* Used if RTX is a symbol_ref, for machine-specific purposes. */
2744#define SYMBOL_REF_FLAG(RTX) \
2745 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2746
2747/* 1 if RTX is a symbol_ref that has been the library function in
2748 emit_library_call. */
2749#define SYMBOL_REF_USED(RTX) \
2750 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2752/* 1 if RTX is a symbol_ref for a weak symbol. */
2753#define SYMBOL_REF_WEAK(RTX) \
2754 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2755
2756/* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2757 SYMBOL_REF_CONSTANT. */
2758#define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2759
2760/* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2761 pool symbol. */
2762#define SET_SYMBOL_REF_DECL(RTX, DECL) \
2763 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2765/* The tree (decl or constant) associated with the symbol, or null. */
2766#define SYMBOL_REF_DECL(RTX) \
2767 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2769/* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2770#define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2771 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2773/* The rtx constant pool entry for a symbol, or null. */
2774#define SYMBOL_REF_CONSTANT(RTX) \
2775 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2776
2777/* A set of flags on a symbol_ref that are, in some respects, redundant with
2778 information derivable from the tree decl associated with this symbol.
2779 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2780 decl. In some cases this is a bug. But beyond that, it's nice to cache
2781 this information to avoid recomputing it. Finally, this allows space for
2782 the target to store more than one bit of information, as with
2783 SYMBOL_REF_FLAG. */
2784#define SYMBOL_REF_FLAGS(RTX) \
2785 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2786 ->u2.symbol_ref_flags)
2787
2788/* These flags are common enough to be defined for all targets. They
2789 are computed by the default version of targetm.encode_section_info. */
2791/* Set if this symbol is a function. */
2792#define SYMBOL_FLAG_FUNCTION (1 << 0)
2793#define SYMBOL_REF_FUNCTION_P(RTX) \
2794 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2795/* Set if targetm.binds_local_p is true. */
2796#define SYMBOL_FLAG_LOCAL (1 << 1)
2797#define SYMBOL_REF_LOCAL_P(RTX) \
2798 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2799/* Set if targetm.in_small_data_p is true. */
2800#define SYMBOL_FLAG_SMALL (1 << 2)
2801#define SYMBOL_REF_SMALL_P(RTX) \
2802 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2803/* The three-bit field at [5:3] is true for TLS variables; use
2804 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2805#define SYMBOL_FLAG_TLS_SHIFT 3
2806#define SYMBOL_REF_TLS_MODEL(RTX) \
2807 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2808/* Set if this symbol is not defined in this translation unit. */
2809#define SYMBOL_FLAG_EXTERNAL (1 << 6)
2810#define SYMBOL_REF_EXTERNAL_P(RTX) \
2811 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2812/* Set if this symbol has a block_symbol structure associated with it. */
2813#define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2814#define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2815 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2816/* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2817 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2818#define SYMBOL_FLAG_ANCHOR (1 << 8)
2819#define SYMBOL_REF_ANCHOR_P(RTX) \
2820 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2822/* Subsequent bits are available for the target to use. */
2823#define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2824#define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2825
2826/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2827 structure to which the symbol belongs, or NULL if it has not been
2828 assigned a block. */
2829#define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2830
2831/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2832 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2833 RTX has not yet been assigned to a block, or it has not been given an
2834 offset within that block. */
2835#define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2837/* True if RTX is flagged to be a scheduling barrier. */
2838#define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2839 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2840
2841/* Indicate whether the machine has any sort of auto increment addressing.
2842 If not, we can avoid checking for REG_INC notes. */
2843
2844#if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2845 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2846 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2847 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2848#define AUTO_INC_DEC 1
2849#else
2850#define AUTO_INC_DEC 0
2851#endif
2852
2853/* Define a macro to look for REG_INC notes,
2854 but save time on machines where they never exist. */
2855
2856#if AUTO_INC_DEC
2857#define FIND_REG_INC_NOTE(INSN, REG) \
2858 ((REG) != NULL_RTX && REG_P ((REG)) \
2859 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2860 : find_reg_note ((INSN), REG_INC, (REG)))
2861#else
2862#define FIND_REG_INC_NOTE(INSN, REG) 0
2863#endif
2865#ifndef HAVE_PRE_INCREMENT
2866#define HAVE_PRE_INCREMENT 0
2867#endif
2869#ifndef HAVE_PRE_DECREMENT
2870#define HAVE_PRE_DECREMENT 0
2871#endif
2873#ifndef HAVE_POST_INCREMENT
2874#define HAVE_POST_INCREMENT 0
2875#endif
2877#ifndef HAVE_POST_DECREMENT
2878#define HAVE_POST_DECREMENT 0
2879#endif
2881#ifndef HAVE_POST_MODIFY_DISP
2882#define HAVE_POST_MODIFY_DISP 0
2883#endif
2885#ifndef HAVE_POST_MODIFY_REG
2886#define HAVE_POST_MODIFY_REG 0
2887#endif
2889#ifndef HAVE_PRE_MODIFY_DISP
2890#define HAVE_PRE_MODIFY_DISP 0
2891#endif
2893#ifndef HAVE_PRE_MODIFY_REG
2894#define HAVE_PRE_MODIFY_REG 0
2895#endif
2896
2897
2898/* Some architectures do not have complete pre/post increment/decrement
2899 instruction sets, or only move some modes efficiently. These macros
2900 allow us to tune autoincrement generation. */
2902#ifndef USE_LOAD_POST_INCREMENT
2903#define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2904#endif
2906#ifndef USE_LOAD_POST_DECREMENT
2907#define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2908#endif
2910#ifndef USE_LOAD_PRE_INCREMENT
2911#define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2912#endif
2914#ifndef USE_LOAD_PRE_DECREMENT
2915#define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2916#endif
2918#ifndef USE_STORE_POST_INCREMENT
2919#define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2920#endif
2922#ifndef USE_STORE_POST_DECREMENT
2923#define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2924#endif
2926#ifndef USE_STORE_PRE_INCREMENT
2927#define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2928#endif
2930#ifndef USE_STORE_PRE_DECREMENT
2931#define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2932#endif
2933
2934/* Nonzero when we are generating CONCATs. */
2935extern int generating_concat_p;
2936
2937/* Nonzero when we are expanding trees to RTL. */
2939
2940/* Generally useful functions. */
2941
2942#ifndef GENERATOR_FILE
2943/* Return the cost of SET X. SPEED_P is true if optimizing for speed
2944 rather than size. */
2946inline int
2947set_rtx_cost (rtx x, bool speed_p)
2948{
2949 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2950}
2951
2952/* Like set_rtx_cost, but return both the speed and size costs in C. */
2954inline void
2956{
2957 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2958}
2959
2960/* Return the cost of moving X into a register, relative to the cost
2961 of a register move. SPEED_P is true if optimizing for speed rather
2962 than size. */
2964inline int
2965set_src_cost (rtx x, machine_mode mode, bool speed_p)
2966{
2967 return rtx_cost (x, mode, SET, 1, speed_p);
2968}
2969
2970/* Like set_src_cost, but return both the speed and size costs in C. */
2972inline void
2973get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2974{
2975 get_full_rtx_cost (x, mode, SET, 1, c);
2976}
2977#endif
2978
2979/* A convenience macro to validate the arguments of a zero_extract
2980 expression. It determines whether SIZE lies inclusively within
2981 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2982 and the sum lies inclusively within [1, RANGE]. RANGE must be
2983 >= 1, but SIZE and POS may be negative. */
2984#define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2985 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2986 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2987 - (unsigned HOST_WIDE_INT)(POS)))
2988
2989/* In explow.cc */
2990extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2991extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2992extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2993extern HOST_WIDE_INT get_stack_check_protect (void);
2995/* In rtl.cc */
2997inline rtx
2998rtx_init (rtx rt, RTX_CODE code)
2999{
3000 memset (rt, 0, RTX_HDR_SIZE);
3001 PUT_CODE (rt, code);
3002 return rt;
3003}
3004#define rtx_alloca(code) \
3005 rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
3007#define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
3008#define const_wide_int_alloc(NWORDS) \
3009 rtx_alloc_v (CONST_WIDE_INT, \
3010 (sizeof (struct hwivec_def) \
3011 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
3012
3013extern rtvec rtvec_alloc (size_t);
3015extern bool shared_const_p (const_rtx);
3016extern rtx copy_rtx (rtx);
3017extern enum rtx_code classify_insn (rtx);
3018extern void dump_rtx_statistics (void);
3019
3020/* In emit-rtl.cc */
3021extern rtx copy_rtx_if_shared (rtx);
3022
3023/* In rtl.cc */
3024extern unsigned int rtx_size (const_rtx);
3026
3028 rtx *, rtx *);
3029extern bool rtx_equal_p (const_rtx, const_rtx,
3031
3032extern bool rtvec_all_equal_p (const_rtvec);
3033extern bool rtvec_series_p (rtvec, int);
3034
3035/* Return true if X is a vector constant with a duplicated element value. */
3037inline bool
3039{
3040 return (GET_CODE (x) == CONST_VECTOR
3041 && CONST_VECTOR_NPATTERNS (x) == 1
3043}
3044
3045/* Return true if X is a vector constant with a duplicated element value.
3046 Store the duplicated element in *ELT if so. */
3047
3048template <typename T>
3049inline bool
3050const_vec_duplicate_p (T x, T *elt)
3051{
3052 if (const_vec_duplicate_p (x))
3053 {
3054 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
3055 return true;
3056 }
3057 return false;
3058}
3059
3060/* Return true if X is a vector with a duplicated element value, either
3061 constant or nonconstant. Store the duplicated element in *ELT if so. */
3062
3063template <typename T>
3064inline bool
3065vec_duplicate_p (T x, T *elt)
3066{
3067 if (GET_CODE (x) == VEC_DUPLICATE
3068 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3069 {
3070 *elt = XEXP (x, 0);
3071 return true;
3072 }
3073 return const_vec_duplicate_p (x, elt);
3074}
3075
3076/* If X is a vector constant with a duplicated element value, return that
3077 element value, otherwise return X. */
3078
3079template <typename T>
3080inline T
3082{
3083 if (const_vec_duplicate_p (x))
3084 x = CONST_VECTOR_ELT (x, 0);
3085 return x;
3086}
3087
3088/* In emit-rtl.cc. */
3089extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3090extern rtx const_vector_elt (const_rtx, unsigned int);
3091extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3092
3093/* Return true if X is an integer constant vector that contains a linear
3094 series of the form:
3095
3096 { B, B + S, B + 2 * S, B + 3 * S, ... }
3097
3098 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3100inline bool
3101const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3102{
3103 if (GET_CODE (x) == CONST_VECTOR
3104 && CONST_VECTOR_NPATTERNS (x) == 1
3106 return const_vec_series_p_1 (x, base_out, step_out);
3107 return false;
3108}
3109
3110/* Return true if X is a vector that contains a linear series of the
3111 form:
3112
3113 { B, B + S, B + 2 * S, B + 3 * S, ... }
3114
3115 where B and S are constant or nonconstant. Store B and S in
3116 *BASE_OUT and *STEP_OUT on sucess. */
3118inline bool
3119vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3120{
3121 if (GET_CODE (x) == VEC_SERIES)
3122 {
3123 *base_out = XEXP (x, 0);
3124 *step_out = XEXP (x, 1);
3125 return true;
3126 }
3127 return const_vec_series_p (x, base_out, step_out);
3128}
3129
3130/* Return true if CONST_VECTORs X and Y, which are known to have the same mode,
3131 also have the same encoding. This means that they are equal whenever their
3132 operands are equal. */
3134inline bool
3136{
3137 /* Don't be fussy about the encoding of constant-length vectors,
3138 since XVECEXP (X, 0) and XVECEXP (Y, 0) list all the elements anyway. */
3139 if (poly_uint64 (CONST_VECTOR_NUNITS (x)).is_constant ())
3140 return true;
3141
3145}
3146
3147/* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3153 return as_a <scalar_int_mode> (GET_MODE (x));
3154}
3155
3156/* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3163}
3164
3165/* In emit-rtl.cc */
3166extern rtvec gen_rtvec_v (int, rtx *);
3167extern rtvec gen_rtvec_v (int, rtx_insn **);
3168extern rtx gen_reg_rtx (machine_mode);
3169extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3170extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3172extern rtx_code_label *gen_label_rtx (void);
3173extern rtx gen_lowpart_common (machine_mode, rtx);
3174
3175/* In cse.cc */
3176extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3177
3178/* In emit-rtl.cc */
3179extern rtx gen_highpart (machine_mode, rtx);
3180extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3181extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3182
3183/* In emit-rtl.cc */
3184extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3185extern bool subreg_lowpart_p (const_rtx);
3187
3188/* Return true if a subreg of mode OUTERMODE would only access part of
3189 an inner register with mode INNERMODE. The other bits of the inner
3190 register would then be "don't care" on read. The behavior for writes
3191 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3192 chunk would be clobbered but other bits would be preserved. */
3194inline bool
3195partial_subreg_p (machine_mode outermode, machine_mode innermode)
3196{
3197 /* Modes involved in a subreg must be ordered. In particular, we must
3198 always know at compile time whether the subreg is paradoxical. */
3199 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3200 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3201 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3202 return maybe_lt (outer_prec, inner_prec);
3203}
3204
3205/* Likewise return true if X is a subreg that is smaller than the inner
3206 register. Use read_modify_subreg_p to test whether writing to such
3207 a subreg preserves any part of the inner register. */
3209inline bool
3211{
3212 if (GET_CODE (x) != SUBREG)
3213 return false;
3214 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3215}
3216
3217/* Return true if a subreg with the given outer and inner modes is
3218 paradoxical. */
3220inline bool
3221paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3222{
3223 /* Modes involved in a subreg must be ordered. In particular, we must
3224 always know at compile time whether the subreg is paradoxical. */
3225 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3226 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3227 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3228 return maybe_gt (outer_prec, inner_prec);
3229}
3230
3231/* Return true if X is a paradoxical subreg, false otherwise. */
3233inline bool
3235{
3236 if (GET_CODE (x) != SUBREG)
3237 return false;
3239}
3240
3241/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3243inline poly_uint64
3244subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3245{
3246 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3247 GET_MODE_SIZE (innermode));
3248}
3249
3250/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3251 return the smaller of the two modes if they are different sizes,
3252 otherwise return the outer mode. */
3254inline machine_mode
3255narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3256{
3257 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3258}
3259
3260/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3261 return the mode that is big enough to hold both the outer and inner
3262 values. Prefer the outer mode in the event of a tie. */
3264inline machine_mode
3265wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3266{
3267 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3268}
3269
3270/* Likewise for subreg X. */
3272inline machine_mode
3274{
3275 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3276}
3277
3279
3280/* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3282inline poly_uint64
3283subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3284{
3285 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3286 GET_MODE_SIZE (innermode));
3287}
3288
3289extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3290extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3291 poly_uint64);
3293extern rtx make_safe_from (rtx, rtx);
3295 addr_space_t, bool, bool);
3298#define convert_memory_address(to_mode,x) \
3299 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3300extern const char *get_insn_name (int);
3301extern rtx_insn *get_last_insn_anywhere (void);
3302extern rtx_insn *get_first_nonnote_insn (void);
3303extern rtx_insn *get_last_nonnote_insn (void);
3304extern void start_sequence (void);
3305extern void push_to_sequence (rtx_insn *);
3306extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3307extern void end_sequence (void);
3308#if TARGET_SUPPORTS_WIDE_INT == 0
3310#endif
3311extern void cwi_output_hex (FILE *, const_rtx);
3312#if TARGET_SUPPORTS_WIDE_INT == 0
3313extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3314 machine_mode);
3315#endif
3316extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3317
3318/* In varasm.cc */
3319extern rtx force_const_mem (machine_mode, rtx);
3320
3321/* In varasm.cc */
3322
3323struct function;
3325extern rtx get_pool_constant_mark (rtx, bool *);
3328extern void decide_function_section (tree);
3329
3330/* In emit-rtl.cc */
3333extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3337 location_t);
3340extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3343extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3349extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3352extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3355extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3358extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3361extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3362extern rtx_insn *emit_insn (rtx);
3363extern rtx_insn *emit_debug_insn (rtx);
3364extern rtx_insn *emit_jump_insn (rtx);
3367extern rtx_insn *emit_call_insn (rtx);
3368extern rtx_code_label *emit_label (rtx);
3370extern rtx_barrier *emit_barrier (void);
3371extern rtx_note *emit_note (enum insn_note);
3372extern rtx_note *emit_note_copy (rtx_note *);
3373extern rtx_insn *gen_clobber (rtx);
3374extern rtx_insn *emit_clobber (rtx);
3375extern rtx_insn *gen_use (rtx);
3376extern rtx_insn *emit_use (rtx);
3377extern rtx_insn *make_insn_raw (rtx);
3378extern void add_function_usage_to (rtx, rtx);
3379extern rtx_call_insn *last_call_insn (void);
3380extern rtx_insn *previous_insn (rtx_insn *);
3381extern rtx_insn *next_insn (rtx_insn *);
3390extern rtx_insn *prev_real_insn (rtx_insn *);
3391extern rtx_insn *next_real_insn (rtx_insn *);
3396extern bool active_insn_p (const rtx_insn *);
3397
3398/* In emit-rtl.cc */
3399extern int insn_line (const rtx_insn *);
3400extern const char * insn_file (const rtx_insn *);
3401extern tree insn_scope (const rtx_insn *);
3402extern expanded_location insn_location (const rtx_insn *);
3403extern int insn_discriminator (const rtx_insn *);
3404extern location_t prologue_location, epilogue_location;
3405
3406/* In jump.cc */
3407extern enum rtx_code reverse_condition (enum rtx_code);
3409extern enum rtx_code swap_condition (enum rtx_code);
3410extern enum rtx_code unsigned_condition (enum rtx_code);
3411extern enum rtx_code signed_condition (enum rtx_code);
3412extern void mark_jump_label (rtx, rtx_insn *, int);
3413
3414/* Return true if integer comparison operator CODE interprets its operands
3415 as unsigned. */
3417inline bool
3419{
3420 return unsigned_condition (code) == code;
3421}
3422
3423/* In jump.cc */
3425
3426/* In recog.cc */
3427extern rtx *find_constant_term_loc (rtx *);
3428
3429/* In emit-rtl.cc */
3430extern rtx_insn *try_split (rtx, rtx_insn *, int);
3432/* In insn-recog.cc (generated by genrecog). */
3433extern rtx_insn *split_insns (rtx, rtx_insn *);
3434
3435/* In simplify-rtx.cc */
3436
3437/* A class that records the context in which a simplification
3438 is being mode. */
3439class simplify_context
3440{
3441public:
3442 rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode);
3443 rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx);
3444 rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode,
3445 rtx, rtx, rtx);
3446 rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode,
3447 rtx, rtx);
3448 rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3449
3450 rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3451
3453
3454 rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode);
3455 rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx);
3456 rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode,
3457 rtx, rtx, rtx);
3458 rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx);
3459 rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3460 rtx simplify_gen_vec_select (rtx, unsigned int);
3461
3462 /* Tracks the level of MEM nesting for the value being simplified:
3463 0 means the value is not in a MEM, >0 means it is. This is needed
3464 because the canonical representation of multiplication is different
3465 inside a MEM than outside. */
3466 unsigned int mem_depth = 0;
3467
3468 /* Tracks number of simplify_associative_operation calls performed during
3469 outermost simplify* call. */
3470 unsigned int assoc_count = 0;
3471
3472 /* Limit for the above number, return NULL from
3473 simplify_associative_operation after we reach that assoc_count. */
3474 static const unsigned int max_assoc_count = 64;
3475
3476private:
3477 rtx simplify_truncation (machine_mode, rtx, machine_mode);
3482 bool = false);
3485 rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int);
3486 rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx);
3488
3491 rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode,
3492 rtx, rtx, rtx);
3493 rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode,
3494 rtx, rtx);
3495};
3497inline rtx
3498simplify_unary_operation (rtx_code code, machine_mode mode, rtx op,
3499 machine_mode op_mode)
3500{
3501 return simplify_context ().simplify_unary_operation (code, mode, op,
3502 op_mode);
3503}
3505inline rtx
3506simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3507{
3508 return simplify_context ().simplify_binary_operation (code, mode, op0, op1);
3509}
3511inline rtx
3512simplify_ternary_operation (rtx_code code, machine_mode mode,
3513 machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
3514{
3515 return simplify_context ().simplify_ternary_operation (code, mode, op0_mode,
3516 op0, op1, op2);
3517}
3519inline rtx
3520simplify_relational_operation (rtx_code code, machine_mode mode,
3521 machine_mode op_mode, rtx op0, rtx op1)
3522{
3523 return simplify_context ().simplify_relational_operation (code, mode,
3524 op_mode, op0, op1);
3525}
3527inline rtx
3528simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3529 poly_uint64 byte)
3530{
3531 return simplify_context ().simplify_subreg (outermode, op, innermode, byte);
3532}
3534inline rtx
3535simplify_gen_unary (rtx_code code, machine_mode mode, rtx op,
3536 machine_mode op_mode)
3537{
3538 return simplify_context ().simplify_gen_unary (code, mode, op, op_mode);
3539}
3541inline rtx
3542simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3543{
3544 return simplify_context ().simplify_gen_binary (code, mode, op0, op1);
3545}
3547inline rtx
3548simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode,
3549 rtx op0, rtx op1, rtx op2)
3550{
3551 return simplify_context ().simplify_gen_ternary (code, mode, op0_mode,
3552 op0, op1, op2);
3553}
3555inline rtx
3556simplify_gen_relational (rtx_code code, machine_mode mode,
3557 machine_mode op_mode, rtx op0, rtx op1)
3558{
3559 return simplify_context ().simplify_gen_relational (code, mode, op_mode,
3560 op0, op1);
3561}
3563inline rtx
3564simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3565 poly_uint64 byte)
3566{
3567 return simplify_context ().simplify_gen_subreg (outermode, op,
3568 innermode, byte);
3569}
3571inline rtx
3572simplify_gen_vec_select (rtx op, unsigned int index)
3573{
3574 return simplify_context ().simplify_gen_vec_select (op, index);
3575}
3577inline rtx
3578lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode)
3579{
3580 return simplify_context ().lowpart_subreg (outermode, op, innermode);
3581}
3582
3583extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3584 rtx, machine_mode);
3585extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3586 rtx, rtx);
3588 machine_mode, rtx, rtx);
3590 rtx (*fn) (rtx, const_rtx, void *), void *);
3592extern rtx simplify_rtx (const_rtx);
3595extern bool mode_signbit_p (machine_mode, const_rtx);
3596extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3597extern bool val_signbit_known_set_p (machine_mode,
3598 unsigned HOST_WIDE_INT);
3599extern bool val_signbit_known_clear_p (machine_mode,
3600 unsigned HOST_WIDE_INT);
3601extern bool reverse_rotate_by_imm_p (machine_mode, unsigned int, rtx);
3602
3603/* In reginfo.cc */
3604extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3605 const predefined_function_abi *);
3606extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3607
3608/* In emit-rtl.cc */
3609extern rtx set_for_reg_notes (rtx);
3610extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3611extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3612extern void set_insn_deleted (rtx_insn *);
3613
3614/* Functions in rtlanal.cc */
3615
3616extern rtx single_set_2 (const rtx_insn *, const_rtx);
3617extern rtx simple_regno_set (rtx, unsigned int);
3618extern bool contains_symbol_ref_p (const_rtx);
3621extern void add_auto_inc_notes (rtx_insn *, rtx);
3622
3623/* Handle the cheap and common cases inline for performance. */
3624
3625inline rtx single_set (const rtx_insn *insn)
3626{
3627 if (!INSN_P (insn))
3628 return NULL_RTX;
3629
3630 if (GET_CODE (PATTERN (insn)) == SET)
3631 return PATTERN (insn);
3632
3633 /* Defer to the more expensive case. */
3634 return single_set_2 (insn, PATTERN (insn));
3635}
3636
3638extern bool rtx_addr_can_trap_p (const_rtx);
3639extern bool nonzero_address_p (const_rtx);
3640extern bool rtx_unstable_p (const_rtx);
3641extern bool rtx_varies_p (const_rtx, bool);
3642extern bool rtx_addr_varies_p (const_rtx, bool);
3643extern rtx get_call_rtx_from (const rtx_insn *);
3644extern tree get_call_fndecl (const rtx_insn *);
3645extern HOST_WIDE_INT get_integer_term (const_rtx);
3647extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3648extern void split_const (rtx, rtx *, rtx *);
3649extern rtx strip_offset (rtx, poly_int64 *);
3651extern bool unsigned_reg_p (rtx);
3652extern bool reg_mentioned_p (const_rtx, const_rtx);
3653extern int count_occurrences (const_rtx, const_rtx, int);
3654extern bool reg_referenced_p (const_rtx, const_rtx);
3655extern bool reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3656extern bool reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3658extern bool swap_commutative_operands_p (rtx, rtx);
3659extern bool modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3660extern bool no_labels_between_p (const rtx_insn *, const rtx_insn *);
3661extern bool modified_in_p (const_rtx, const_rtx);
3662extern bool reg_set_p (const_rtx, const_rtx);
3663extern bool multiple_sets (const_rtx);
3664extern bool set_noop_p (const_rtx);
3665extern bool noop_move_p (const rtx_insn *);
3666extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3669extern void record_hard_reg_sets (rtx, const_rtx, void *);
3670extern void record_hard_reg_uses (rtx *, void *);
3672extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3673extern void note_pattern_stores (const_rtx,
3674 void (*) (rtx, const_rtx, void *), void *);
3675extern void note_stores (const rtx_insn *,
3676 void (*) (rtx, const_rtx, void *), void *);
3677extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3678extern bool dead_or_set_p (const rtx_insn *, const_rtx);
3679extern bool dead_or_set_regno_p (const rtx_insn *, unsigned int);
3681extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3683extern rtx find_constant_src (const rtx_insn *);
3684extern bool find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3685extern bool find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3686extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3687extern void add_reg_note (rtx, enum reg_note, rtx);
3688extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3689extern void add_args_size_note (rtx_insn *, poly_int64);
3691extern rtx duplicate_reg_note (rtx);
3692extern void remove_note (rtx_insn *, const_rtx);
3693extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false);
3694extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3695extern bool side_effects_p (const_rtx);
3696extern bool volatile_refs_p (const_rtx);
3697extern bool volatile_insn_p (const_rtx);
3698extern bool may_trap_p_1 (const_rtx, unsigned);
3699extern bool may_trap_p (const_rtx);
3700extern bool may_trap_or_fault_p (const_rtx);
3701extern bool can_throw_internal (const_rtx);
3702extern bool can_throw_external (const_rtx);
3703extern bool insn_could_throw_p (const_rtx);
3704extern bool insn_nothrow_p (const_rtx);
3705extern bool can_nonlocal_goto (const rtx_insn *);
3708extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3709extern void replace_label (rtx *, rtx, rtx, bool);
3710extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3711extern bool rtx_referenced_p (const_rtx, const_rtx);
3712extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3713extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3714extern bool computed_jump_p (const rtx_insn *);
3715extern bool tls_referenced_p (const_rtx);
3716extern bool contains_mem_rtx_p (rtx x);
3717extern bool register_asm_p (const_rtx);
3718
3719/* Overload for refers_to_regno_p for checking a single register. */
3720inline bool
3721refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3722{
3723 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3724}
3725
3726/* Callback for for_each_inc_dec, to process the autoinc operation OP
3727 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3728 NULL. The callback is passed the same opaque ARG passed to
3729 for_each_inc_dec. Return zero to continue looking for other
3730 autoinc operations or any other value to interrupt the traversal and
3731 return that value to the caller of for_each_inc_dec. */
3732typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3733 rtx srcoff, void *arg);
3734extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3735
3736extern rtx regno_use_in (unsigned int, rtx);
3737extern bool auto_inc_p (const_rtx);
3738extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3739extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3740extern bool loc_mentioned_in_p (rtx *, const_rtx);
3742extern bool keep_with_call_p (const rtx_insn *);
3743extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3744extern int pattern_cost (rtx, bool);
3745extern int insn_cost (rtx_insn *, bool);
3746extern unsigned seq_cost (const rtx_insn *, bool);
3747
3748/* Given an insn and condition, return a canonical description of
3749 the test being made. */
3750extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3751 int, int);
3752
3753/* Given a JUMP_INSN, return a canonical description of the test
3754 being made. */
3755extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3757/* Information about a subreg of a hard register. */
3758struct subreg_info
3760 /* Offset of first hard register involved in the subreg. */
3761 int offset;
3762 /* Number of hard registers involved in the subreg. In the case of
3763 a paradoxical subreg, this is the number of registers that would
3764 be modified by writing to the subreg; some of them may be don't-care
3765 when reading from the subreg. */
3766 int nregs;
3767 /* Whether this subreg can be represented as a hard reg with the new
3768 mode (by adding OFFSET to the original hard register). */
3769 bool representable_p;
3770};
3771
3772extern void subreg_get_info (unsigned int, machine_mode,
3773 poly_uint64, machine_mode,
3774 struct subreg_info *);
3775
3776/* lists.cc */
3777
3778extern void free_EXPR_LIST_list (rtx_expr_list **);
3779extern void free_INSN_LIST_list (rtx_insn_list **);
3780extern void free_EXPR_LIST_node (rtx);
3781extern void free_INSN_LIST_node (rtx);
3785extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3787extern rtx remove_list_elem (rtx, rtx *);
3790
3791
3792/* reginfo.cc */
3793
3794/* Resize reg info. */
3795extern bool resize_reg_info (void);
3796/* Free up register info memory. */
3797extern void free_reg_info (void);
3798extern void init_subregs_of_mode (void);
3799extern void finish_subregs_of_mode (void);
3800extern void reginfo_cc_finalize (void);
3801
3802/* recog.cc */
3804extern int asm_noperands (const_rtx);
3805extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3806 machine_mode *, location_t *);
3807extern void get_referenced_operands (const char *, bool *, unsigned int);
3808
3809extern enum reg_class reg_preferred_class (int);
3810extern enum reg_class reg_alternate_class (int);
3811extern enum reg_class reg_allocno_class (int);
3812extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3813 enum reg_class);
3814
3815extern void split_all_insns (void);
3816extern void split_all_insns_noflow (void);
3817
3818#define MAX_SAVED_CONST_INT 64
3821#define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3822#define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3823#define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3824#define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3825extern GTY(()) rtx const_true_rtx;
3826
3827extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3828
3829/* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3830 same as VOIDmode. */
3831
3832#define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3833
3834/* Likewise, for the constants 1 and 2 and -1. */
3836#define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3837#define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3838#define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3839
3840extern GTY(()) rtx pc_rtx;
3841extern GTY(()) rtx ret_rtx;
3842extern GTY(()) rtx simple_return_rtx;
3843extern GTY(()) rtx_insn *invalid_insn_rtx;
3844
3845/* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3846 is used to represent the frame pointer. This is because the
3847 hard frame pointer and the automatic variables are separated by an amount
3848 that cannot be determined until after register allocation. We can assume
3849 that in this case ELIMINABLE_REGS will be defined, one action of which
3850 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3851#ifndef HARD_FRAME_POINTER_REGNUM
3852#define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3853#endif
3855#ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3856#define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3857 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3858#endif
3860#ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3861#define HARD_FRAME_POINTER_IS_ARG_POINTER \
3862 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3863#endif
3865/* Index labels for global_rtl. */
3870/* For register elimination to work properly these hard_frame_pointer_rtx,
3871 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3872 the same register. */
3873#if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3875#endif
3876#if HARD_FRAME_POINTER_IS_FRAME_POINTER
3878#else
3880#endif
3881#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3882#if HARD_FRAME_POINTER_IS_ARG_POINTER
3884#else
3886#endif
3887#endif
3894
3895 GR_MAX
3896};
3898/* Target-dependent globals. */
3899struct GTY(()) target_rtl {
3900 /* All references to the hard registers in global_rtl_index go through
3901 these unique rtl objects. On machines where the frame-pointer and
3902 arg-pointer are the same register, they use the same unique object.
3903
3904 After register allocation, other rtl objects which used to be pseudo-regs
3905 may be clobbered to refer to the frame-pointer register.
3906 But references that were originally to the frame-pointer can be
3907 distinguished from the others because they contain frame_pointer_rtx.
3908
3909 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3910 tricky: until register elimination has taken place hard_frame_pointer_rtx
3911 should be used if it is being set, and frame_pointer_rtx otherwise. After
3912 register elimination hard_frame_pointer_rtx should always be used.
3913 On machines where the two registers are same (most) then these are the
3914 same. */
3917 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3919
3920 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3921 This is used to implement __builtin_return_address for some machines;
3922 see for instance the MIPS port. */
3924
3925 /* Commonly used RTL for hard registers. These objects are not
3926 necessarily unique, so we allocate them separately from global_rtl.
3927 They are initialized once per compilation unit, then copied into
3928 regno_reg_rtx at the beginning of each function. */
3929 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3931 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3932 rtx x_top_of_stack[MAX_MACHINE_MODE];
3933
3934 /* Static hunks of RTL used by the aliasing code; these are treated
3935 as persistent to avoid unnecessary RTL allocations. */
3936 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3938 /* The default memory attributes for each mode. */
3939 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3941 /* Track if RTL has been initialized. */
3943};
3944
3945extern GTY(()) struct target_rtl default_target_rtl;
3946#if SWITCHABLE_TARGET
3948#else
3949#define this_target_rtl (&default_target_rtl)
3950#endif
3951
3952#define global_rtl \
3953 (this_target_rtl->x_global_rtl)
3954#define pic_offset_table_rtx \
3955 (this_target_rtl->x_pic_offset_table_rtx)
3956#define return_address_pointer_rtx \
3957 (this_target_rtl->x_return_address_pointer_rtx)
3958#define top_of_stack \
3959 (this_target_rtl->x_top_of_stack)
3960#define mode_mem_attrs \
3961 (this_target_rtl->x_mode_mem_attrs)
3962
3963/* All references to certain hard regs, except those created
3964 by allocating pseudo regs into them (when that's possible),
3965 go through these unique rtx objects. */
3966#define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3967#define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3968#define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3969#define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3970
3971#ifndef GENERATOR_FILE
3972/* Return the attributes of a MEM rtx. */
3973inline const class mem_attrs *
3975{
3976 class mem_attrs *attrs;
3977
3978 attrs = MEM_ATTRS (x);
3979 if (!attrs)
3980 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3981 return attrs;
3982}
3983#endif
3984
3985/* Include the RTL generation functions. */
3986
3987#ifndef GENERATOR_FILE
3988#include "genrtl.h"
3989#undef gen_rtx_ASM_INPUT
3990#define gen_rtx_ASM_INPUT(MODE, ARG0) \
3991 gen_rtx_fmt_sL (ASM_INPUT, (MODE), (ARG0), 0)
3992#define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3993 gen_rtx_fmt_sL (ASM_INPUT, (MODE), (ARG0), (LOC))
3994#endif
3995
3996/* There are some RTL codes that require special attention; the
3997 generation functions included above do the raw handling. If you
3998 add to this list, modify special_rtx in gengenrtl.cc as well. */
3999
4000extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
4001extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
4002extern rtx_insn *
4003gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
4004 basic_block bb, rtx pattern, location_t location, int code,
4005 rtx reg_notes);
4006extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
4007extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
4008extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
4009extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
4010extern rtx gen_raw_REG (machine_mode, unsigned int);
4011#define alloca_raw_REG(mode, regno) \
4012 init_raw_REG (rtx_alloca (REG), (mode), (regno))
4013extern rtx gen_rtx_REG (machine_mode, unsigned int);
4014extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
4015extern rtx gen_rtx_MEM (machine_mode, rtx);
4016extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
4017 enum var_init_status);
4018
4019#ifdef GENERATOR_FILE
4020#define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
4021#else
4022inline void
4023PUT_MODE (rtx x, machine_mode mode)
4024{
4025 if (REG_P (x))
4026 set_mode_and_regno (x, mode, REGNO (x));
4027 else
4028 PUT_MODE_RAW (x, mode);
4029}
4030#endif
4031
4032#define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
4033
4034/* Virtual registers are used during RTL generation to refer to locations into
4035 the stack frame when the actual location isn't known until RTL generation
4036 is complete. The routine instantiate_virtual_regs replaces these with
4037 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
4038 a constant. */
4039
4040#define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
4041
4042/* This points to the first word of the incoming arguments passed on the stack,
4043 either by the caller or by the callee when pretending it was passed by the
4044 caller. */
4045
4046#define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
4047
4048#define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
4049
4050/* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
4051 variable on the stack. Otherwise, it points to the first variable on
4052 the stack. */
4053
4054#define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
4055
4056#define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
4057
4058/* This points to the location of dynamically-allocated memory on the stack
4059 immediately after the stack pointer has been adjusted by the amount
4060 desired. */
4061
4062#define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
4063
4064#define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
4065
4066/* This points to the location in the stack at which outgoing arguments should
4067 be written when the stack is pre-pushed (arguments pushed using push
4068 insns always use sp). */
4069
4070#define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
4071
4072#define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
4073
4074/* This points to the Canonical Frame Address of the function. This
4075 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
4076 but is calculated relative to the arg pointer for simplicity; the
4077 frame pointer nor stack pointer are necessarily fixed relative to
4078 the CFA until after reload. */
4079
4080#define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
4081
4082#define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
4083
4084#define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
4085
4086/* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
4087 when finalized. */
4088
4089#define virtual_preferred_stack_boundary_rtx \
4090 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
4091
4092#define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
4093 ((FIRST_VIRTUAL_REGISTER) + 5)
4094
4095#define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
4097/* Nonzero if REGNUM is a pointer into the stack frame. */
4098#define REGNO_PTR_FRAME_P(REGNUM) \
4099 ((REGNUM) == STACK_POINTER_REGNUM \
4100 || (REGNUM) == FRAME_POINTER_REGNUM \
4101 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
4102 || (REGNUM) == ARG_POINTER_REGNUM \
4103 || VIRTUAL_REGISTER_NUM_P (REGNUM))
4105/* REGNUM never really appearing in the INSN stream. */
4106#define INVALID_REGNUM (~(unsigned int) 0)
4108/* REGNUM for which no debug information can be generated. */
4109#define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
4110
4111extern rtx output_constant_def (tree, int);
4113
4114/* Nonzero after end of reload pass.
4115 Set to 1 or 0 by reload1.cc. */
4116
4117extern int reload_completed;
4118
4119/* Nonzero after thread_prologue_and_epilogue_insns has run. */
4120extern int epilogue_completed;
4121
4122/* Set to 1 while reload_as_needed is operating.
4123 Required by some machines to handle any generated moves differently. */
4124
4125extern int reload_in_progress;
4126
4127/* Set to true while in IRA. */
4128extern bool ira_in_progress;
4129
4130/* Set to true while in LRA. */
4131extern bool lra_in_progress;
4132
4133/* This macro indicates whether you may create a new
4134 pseudo-register. */
4135
4136#define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
4137
4138#ifdef STACK_REGS
4139/* Nonzero after end of regstack pass.
4140 Set to 1 or 0 by reg-stack.cc. */
4141extern int regstack_completed;
4142#endif
4143
4144/* If this is nonzero, we do not bother generating VOLATILE
4145 around volatile memory references, and we are willing to
4146 output indirect addresses. If cse is to follow, we reject
4147 indirect addresses so a useful potential cse is generated;
4148 if it is used only once, instruction combination will produce
4149 the same indirect address eventually. */
4150extern int cse_not_expected;
4151
4152/* Translates rtx code to tree code, for those codes needed by
4153 real_arithmetic. The function returns an int because the caller may not
4154 know what `enum tree_code' means. */
4155
4156extern int rtx_to_tree_code (enum rtx_code);
4157
4158/* In cse.cc */
4159extern int delete_trivially_dead_insns (rtx_insn *, int);
4160extern bool exp_equiv_p (const_rtx, const_rtx, int, bool);
4161
4162typedef bool (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
4163 machine_mode *);
4164extern unsigned hash_rtx (const_rtx, machine_mode, int *, int *,
4166
4167/* In dse.cc */
4168extern bool check_for_inc_dec (rtx_insn *insn);
4169
4170/* In jump.cc */
4171extern bool comparison_dominates_p (enum rtx_code, enum rtx_code);
4172extern bool jump_to_label_p (const rtx_insn *);
4173extern bool condjump_p (const rtx_insn *);
4174extern bool any_condjump_p (const rtx_insn *);
4175extern bool any_uncondjump_p (const rtx_insn *);
4176extern rtx pc_set (const rtx_insn *);
4177extern rtx condjump_label (const rtx_insn *);
4178extern bool simplejump_p (const rtx_insn *);
4179extern bool returnjump_p (const rtx_insn *);
4180extern bool eh_returnjump_p (rtx_insn *);
4181extern bool onlyjump_p (const rtx_insn *);
4182extern bool invert_jump_1 (rtx_jump_insn *, rtx);
4183extern bool invert_jump (rtx_jump_insn *, rtx, int);
4185extern int true_regnum (const_rtx);
4186extern unsigned int reg_or_subregno (const_rtx);
4187extern bool redirect_jump_1 (rtx_insn *, rtx);
4188extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
4189extern bool redirect_jump (rtx_jump_insn *, rtx, int);
4190extern void rebuild_jump_labels (rtx_insn *);
4191extern void rebuild_jump_labels_chain (rtx_insn *);
4192extern rtx reversed_comparison (const_rtx, machine_mode);
4195 const_rtx, const rtx_insn *);
4196extern void delete_for_peephole (rtx_insn *, rtx_insn *);
4197extern bool condjump_in_parallel_p (const rtx_insn *);
4198
4199/* In emit-rtl.cc. */
4200extern int max_reg_num (void);
4201extern int max_label_num (void);
4202extern int get_first_label_num (void);
4204extern void delete_insns_since (rtx_insn *);
4205extern void mark_reg_pointer (rtx, int);
4206extern void mark_user_reg (rtx);
4207extern void reset_used_flags (rtx);
4208extern void set_used_flags (rtx);
4209extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4210extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4211extern int get_max_insn_count (void);
4212extern bool in_sequence_p (void);
4213extern void init_emit (void);
4214extern void init_emit_regs (void);
4215extern void init_derived_machine_modes (void);
4216extern void init_emit_once (void);
4217extern void push_topmost_sequence (void);
4218extern void pop_topmost_sequence (void);
4220extern void unshare_all_rtl (void);
4221extern void unshare_all_rtl_again (rtx_insn *);
4222extern void unshare_all_rtl_in_chain (rtx_insn *);
4223extern void verify_rtl_sharing (void);
4224extern void add_insn (rtx_insn *);
4225extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4226extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4227extern void remove_insn (rtx_insn *);
4228extern rtx_insn *emit (rtx, bool = true);
4229extern void emit_insn_at_entry (rtx);
4230extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4231extern rtx gen_const_mem (machine_mode, rtx);
4232extern rtx gen_frame_mem (machine_mode, rtx);
4233extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4234extern bool validate_subreg (machine_mode, machine_mode,
4236
4237/* In combine.cc */
4238extern unsigned int extended_count (const_rtx, machine_mode, bool);
4239extern rtx remove_death (unsigned int, rtx_insn *);
4241
4242/* In sched-rgn.cc. */
4243extern void schedule_insns (void);
4245/* In sched-ebb.cc. */
4246extern void schedule_ebbs (void);
4248/* In sel-sched-dump.cc. */
4249extern void sel_sched_fix_param (const char *param, const char *val);
4250
4251/* In print-rtl.cc */
4252extern const char *print_rtx_head;
4253extern void debug (const rtx_def &ref);
4254extern void debug (const rtx_def *ptr);
4255extern void debug_rtx (const_rtx);
4256extern void debug_rtx_list (const rtx_insn *, int);
4257extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4258extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4259extern void print_mem_expr (FILE *, const_tree);
4260extern void print_rtl (FILE *, const_rtx);
4261extern void print_simple_rtl (FILE *, const_rtx);
4262extern void print_rtl_single (FILE *, const_rtx);
4263extern void print_rtl_single_with_indent (FILE *, const_rtx, int);
4264extern void print_inline_rtx (FILE *, const_rtx, int);
4265
4266/* In stmt.cc */
4267extern void expand_null_return (void);
4268extern void expand_naked_return (void);
4269extern void emit_jump (rtx);
4270
4271/* Memory operation built-ins differ by return value. Mapping
4272 of the enum values is following:
4273 - RETURN_BEGIN - return destination, e.g. memcpy
4274 - RETURN_END - return destination + n, e.g. mempcpy
4275 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4276 null byte of the string, e.g. strcpy
4284};
4285
4286/* In expr.cc */
4287extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4288 unsigned int, memop_ret);
4291
4292/* In expmed.cc */
4293extern void init_expmed (void);
4294extern void expand_inc (rtx, rtx);
4295extern void expand_dec (rtx, rtx);
4296
4297/* In lower-subreg.cc */
4298extern void init_lower_subreg (void);
4299
4300/* In gcse.cc */
4301extern bool can_copy_p (machine_mode);
4302extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4304
4305/* In cprop.cc */
4306extern rtx fis_get_condition (rtx_insn *);
4307
4308/* In ira.cc */
4310extern void mark_elimination (int, int);
4311
4312/* In reginfo.cc */
4315extern void globalize_reg (tree, int);
4316extern void init_reg_modes_target (void);
4317extern void init_regs (void);
4318extern void reinit_regs (void);
4319extern void init_fake_stack_mems (void);
4320extern void save_register_info (void);
4321extern void init_reg_sets (void);
4322extern void regclass (rtx, int);
4323extern void reg_scan (rtx_insn *, unsigned int);
4324extern void fix_register (const char *, int, int);
4325extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4326
4327/* In reload1.cc */
4328extern bool function_invariant_p (const_rtx);
4330/* In calls.cc */
4337 LCT_THROW = 4,
4339};
4340
4342 machine_mode, int, rtx_mode_t *);
4343
4344/* Output a library call and discard the returned value. FUN is the
4345 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4346 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4347 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4348 another LCT_ value for other types of library calls.
4349
4350 There are different overloads of this function for different numbers
4351 of arguments. In each case the argument value is followed by its mode. */
4353inline void
4354emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4355{
4356 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4357}
4359inline void
4360emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4361 rtx arg1, machine_mode arg1_mode)
4362{
4363 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4364 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4365}
4367inline void
4368emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4369 rtx arg1, machine_mode arg1_mode,
4370 rtx arg2, machine_mode arg2_mode)
4371{
4372 rtx_mode_t args[] = {
4373 rtx_mode_t (arg1, arg1_mode),
4374 rtx_mode_t (arg2, arg2_mode)
4375 };
4376 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4377}
4379inline void
4380emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4381 rtx arg1, machine_mode arg1_mode,
4382 rtx arg2, machine_mode arg2_mode,
4383 rtx arg3, machine_mode arg3_mode)
4384{
4385 rtx_mode_t args[] = {
4386 rtx_mode_t (arg1, arg1_mode),
4387 rtx_mode_t (arg2, arg2_mode),
4388 rtx_mode_t (arg3, arg3_mode)
4389 };
4390 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4391}
4393inline void
4394emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4395 rtx arg1, machine_mode arg1_mode,
4396 rtx arg2, machine_mode arg2_mode,
4397 rtx arg3, machine_mode arg3_mode,
4398 rtx arg4, machine_mode arg4_mode)
4399{
4400 rtx_mode_t args[] = {
4401 rtx_mode_t (arg1, arg1_mode),
4402 rtx_mode_t (arg2, arg2_mode),
4403 rtx_mode_t (arg3, arg3_mode),
4404 rtx_mode_t (arg4, arg4_mode)
4405 };
4406 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4407}
4408
4409/* Like emit_library_call, but return the value produced by the call.
4410 Use VALUE to store the result if it is nonnull, otherwise pick a
4411 convenient location. */
4413inline rtx
4414emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4415 machine_mode outmode)
4416{
4417 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4418}
4420inline rtx
4421emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4422 machine_mode outmode,
4423 rtx arg1, machine_mode arg1_mode)
4424{
4425 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4426 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4427}
4429inline rtx
4430emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4431 machine_mode outmode,
4432 rtx arg1, machine_mode arg1_mode,
4433 rtx arg2, machine_mode arg2_mode)
4434{
4435 rtx_mode_t args[] = {
4436 rtx_mode_t (arg1, arg1_mode),
4437 rtx_mode_t (arg2, arg2_mode)
4438 };
4439 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4440}
4442inline rtx
4443emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4444 machine_mode outmode,
4445 rtx arg1, machine_mode arg1_mode,
4446 rtx arg2, machine_mode arg2_mode,
4447 rtx arg3, machine_mode arg3_mode)
4448{
4449 rtx_mode_t args[] = {
4450 rtx_mode_t (arg1, arg1_mode),
4451 rtx_mode_t (arg2, arg2_mode),
4452 rtx_mode_t (arg3, arg3_mode)
4453 };
4454 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4455}
4457inline rtx
4458emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4459 machine_mode outmode,
4460 rtx arg1, machine_mode arg1_mode,
4461 rtx arg2, machine_mode arg2_mode,
4462 rtx arg3, machine_mode arg3_mode,
4463 rtx arg4, machine_mode arg4_mode)
4464{
4465 rtx_mode_t args[] = {
4466 rtx_mode_t (arg1, arg1_mode),
4467 rtx_mode_t (arg2, arg2_mode),
4468 rtx_mode_t (arg3, arg3_mode),
4469 rtx_mode_t (arg4, arg4_mode)
4470 };
4471 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4472}
4473
4474/* In varasm.cc */
4475extern void init_varasm_once (void);
4476
4478
4479/* In read-rtl.cc */
4480#ifdef GENERATOR_FILE
4481extern bool read_rtx (const char *, vec<rtx> *);
4482#endif
4483
4484/* In alias.cc */
4485extern rtx canon_rtx (rtx);
4486extern rtx get_addr (rtx);
4487extern bool read_dependence (const_rtx, const_rtx);
4488extern bool true_dependence (const_rtx, machine_mode, const_rtx);
4489extern bool canon_true_dependence (const_rtx, machine_mode, rtx,
4490 const_rtx, rtx);
4491extern bool anti_dependence (const_rtx, const_rtx);
4492extern bool canon_anti_dependence (const_rtx, bool,
4493 const_rtx, machine_mode, rtx);
4495extern bool canon_output_dependence (const_rtx, bool,
4496 const_rtx, machine_mode, rtx);
4497extern bool may_alias_p (const_rtx, const_rtx);
4498extern void init_alias_target (void);
4499extern void init_alias_analysis (void);
4500extern void end_alias_analysis (void);
4503extern bool may_be_sp_based_p (rtx);
4504extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4505extern rtx get_reg_known_value (unsigned int);
4506extern bool get_reg_known_equiv_p (unsigned int);
4507extern rtx get_reg_base_value (unsigned int);
4509
4510#ifdef STACK_REGS
4511extern bool stack_regs_mentioned (const_rtx insn);
4512#endif
4513
4514/* In toplev.cc */
4515extern GTY(()) rtx stack_limit_rtx;
4516
4517/* In var-tracking.cc */
4518extern unsigned int variable_tracking_main (void);
4519extern void delete_vta_debug_insns (bool);
4520
4521/* In stor-layout.cc. */
4522extern void get_mode_bounds (scalar_int_mode, int,
4523 scalar_int_mode, rtx *, rtx *);
4524
4525/* In loop-iv.cc */
4526extern rtx canon_condition (rtx);
4527extern void simplify_using_condition (rtx, rtx *, bitmap);
4528
4529/* In final.cc */
4530extern void compute_alignments (void);
4531extern void update_alignments (vec<rtx> &);
4532extern int asm_str_count (const char *templ);
4533
4536 rtx (*gen_lowpart) (machine_mode, rtx);
4537 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4539 unsigned HOST_WIDE_INT *);
4541 unsigned int *);
4542 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4543
4544 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4545};
4546
4547/* Each pass can provide its own. */
4548extern struct rtl_hooks rtl_hooks;
4549
4550/* ... but then it has to restore these. */
4551extern const struct rtl_hooks general_rtl_hooks;
4553/* Keep this for the nonce. */
4554#define gen_lowpart rtl_hooks.gen_lowpart
4555
4556extern void insn_locations_init (void);
4557extern void insn_locations_finalize (void);
4558extern void set_curr_insn_location (location_t);
4559extern location_t curr_insn_location (void);
4560extern void set_insn_locations (rtx_insn *, location_t);
4561
4562/* rtl-error.cc */
4563extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4564 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4565extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4566 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4567
4568#define fatal_insn(msgid, insn) \
4569 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4570#define fatal_insn_not_found(insn) \
4571 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4572
4573/* reginfo.cc */
4574extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4575
4576/* Information about the function that is propagated by the RTL backend.
4577 Available only for functions that has been already assembled. */
4579struct GTY(()) cgraph_rtl_info {
4581
4582 /* Which registers the function clobbers, either directly or by
4583 calling another function. */
4585};
4586
4587/* If loads from memories of mode MODE always sign or zero extend,
4588 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4589 otherwise. */
4591inline rtx_code
4592load_extend_op (machine_mode mode)
4593{
4594 scalar_int_mode int_mode;
4595 if (is_a <scalar_int_mode> (mode, &int_mode)
4596 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4597 return LOAD_EXTEND_OP (int_mode);
4598 return UNKNOWN;
4599}
4600
4601/* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4602 and return the base. Return X otherwise. */
4604inline rtx
4606{
4607 if (GET_CODE (x) == PLUS)
4608 {
4609 poly_int64 suboffset;
4610 x = strip_offset (x, &suboffset);
4611 *offset = poly_uint64 (*offset) + suboffset;
4612 }
4613 return x;
4614}
4615
4616/* Return true if X is an operation that always operates on the full
4617 registers for WORD_REGISTER_OPERATIONS architectures. */
4619inline bool
4621{
4622 switch (GET_CODE (x))
4623 {
4624 case CONST_INT:
4625 case ROTATE:
4626 case ROTATERT:
4627 case SIGN_EXTRACT:
4628 case ZERO_EXTRACT:
4629 return false;
4630
4631 default:
4632 return true;
4633 }
4634}
4635
4636/* Holds an rtx comparison to simplify passing many parameters pertaining to a
4637 single comparison. */
4641 rtx op0, op1;
4642 machine_mode mode;
4643};
4645/* gtype-desc.cc. */
4646extern void gt_ggc_mx (rtx &);
4647extern void gt_pch_nx (rtx &);
4648extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4649
4650#endif /* ! GCC_RTL_H */
static int unique_id
Definition alias.cc:221
Definition varasm.cc:3951
Definition machmode.h:833
Definition rtl.h:153
poly_int64 offset
Definition rtl.h:164
unsigned char addrspace
Definition rtl.h:179
tree expr
Definition rtl.h:160
alias_set_type alias
Definition rtl.h:171
mem_attrs()
Definition emit-rtl.cc:1829
poly_int64 size
Definition rtl.h:168
bool offset_known_p
Definition rtl.h:182
bool size_known_p
Definition rtl.h:185
unsigned int align
Definition rtl.h:176
Definition poly-int.h:378
C coeffs[N]
Definition poly-int.h:433
Definition function-abi.h:35
Definition rtl.h:195
tree decl
Definition rtl.h:197
poly_int64 offset
Definition rtl.h:198
Definition machmode.h:437
Definition rtl.h:3438
rtx simplify_binary_operation_1(rtx_code, machine_mode, rtx, rtx, rtx, rtx)
Definition simplify-rtx.cc:3022
rtx simplify_binary_operation_series(rtx_code, machine_mode, rtx, rtx)
Definition simplify-rtx.cc:2771
static const unsigned int max_assoc_count
Definition rtl.h:3472
unsigned int assoc_count
Definition rtl.h:3468
rtx simplify_shift_const_int(rtx_code, machine_mode, rtx, unsigned int)
rtx simplify_relational_operation_1(rtx_code, machine_mode, machine_mode, rtx, rtx)
Definition simplify-rtx.cc:6221
rtx simplify_associative_operation(rtx_code, machine_mode, rtx, rtx)
Definition simplify-rtx.cc:2393
rtx simplify_plus_minus(rtx_code, machine_mode, rtx, rtx)
Definition simplify-rtx.cc:5833
rtx simplify_merge_mask(rtx, rtx, int)
Definition simplify-rtx.cc:6994
rtx simplify_gen_relational(rtx_code, machine_mode, machine_mode, rtx, rtx)
Definition simplify-rtx.cc:387
rtx simplify_ternary_operation_1(rtx_code, machine_mode, machine_mode, rtx, rtx, rtx)