GCC Middle and Back End API Reference
ira.cc File Reference
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "ira-int.h"
#include "diagnostic-core.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "expr.h"
#include "tree-pass.h"
#include "output.h"
#include "reload.h"
#include "cfgloop.h"
#include "lra.h"
#include "dce.h"
#include "dbgcnt.h"
#include "rtl-iter.h"
#include "shrink-wrap.h"
#include "print-rtl.h"
Include dependency graph for ira.cc:

Data Structures

struct  equivalence
 
struct  equiv_mem_data
 
struct  sloc
 

Macros

#define last_mode_for_init_move_cost    (this_target_ira_int->x_last_mode_for_init_move_cost)
 
#define no_unit_alloc_regs    (this_target_ira_int->x_no_unit_alloc_regs)
 
#define alloc_reg_class_subclasses    (this_target_ira_int->x_alloc_reg_class_subclasses)
 
#define IRA_NO_OBSTACK
 
#define ira_prohibited_mode_move_regs_initialized_p    (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
 

Typedefs

typedef struct slocsloc_t
 

Enumerations

enum  valid_equiv { valid_none , valid_combine , valid_reload }
 

Functions

static void setup_reg_mode_hard_regset (void)
 
static void setup_class_hard_regs (void)
 
static void setup_alloc_regs (bool use_hard_frame_p)
 
static void setup_reg_subclasses (void)
 
static void setup_class_subset_and_memory_move_costs (void)
 
void * ira_allocate (size_t len)
 
void ira_free (void *addr)
 
bitmap ira_allocate_bitmap (void)
 
void ira_free_bitmap (bitmap b)
 
void ira_print_disposition (FILE *f)
 
void ira_debug_disposition (void)
 
static void setup_stack_reg_pressure_class (void)
 
static void setup_pressure_classes (void)
 
static void setup_uniform_class_p (void)
 
static void setup_allocno_and_important_classes (void)
 
static void setup_class_translate_array (enum reg_class *class_translate, int classes_num, enum reg_class *classes)
 
static void setup_class_translate (void)
 
static int comp_reg_classes_func (const void *v1p, const void *v2p)
 
static void reorder_important_classes (void)
 
static void setup_reg_class_relations (void)
 
static void print_uniform_and_important_classes (FILE *f)
 
static void print_translated_classes (FILE *f, bool pressure_p)
 
void ira_debug_allocno_classes (void)
 
static void find_reg_classes (void)
 
static void setup_hard_regno_aclass (void)
 
static void setup_reg_class_nregs (void)
 
static void setup_prohibited_and_exclude_class_mode_regs (void)
 
static void clarify_prohibited_class_mode_regs (void)
 
void ira_init_register_move_cost (machine_mode mode)
 
void ira_init_once (void)
 
void ira_init (void)
 
static void setup_prohibited_mode_move_regs (void)
 
alternative_mask ira_setup_alts (rtx_insn *insn)
 
int ira_get_dup_out_num (int op_num, alternative_mask alts, bool &single_input_op_has_cstr_p)
 
static void decrease_live_ranges_number (void)
 
static bool ira_bad_reload_regno_1 (int regno, rtx x)
 
bool ira_bad_reload_regno (int regno, rtx in, rtx out)
 
static void compute_regs_asm_clobbered (void)
 
void ira_setup_eliminable_regset (void)
 
static void setup_reg_renumber (void)
 
static void setup_allocno_assignment_flags (void)
 
static void calculate_allocation_cost (void)
 
static void setup_reg_equiv_init (void)
 
void ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
 
static void fix_reg_equiv_init (void)
 
static void setup_preferred_alternate_classes_for_new_pseudos (int start)
 
static void expand_reg_info (void)
 
static bool too_high_register_pressure_p (void)
 
void mark_elimination (int from, int to)
 
void ira_expand_reg_equiv (void)
 
static void init_reg_equiv (void)
 
static void finish_reg_equiv (void)
 
static void validate_equiv_mem_from_store (rtx dest, const_rtx set, void *data)
 
static bool equiv_init_varies_p (rtx x)
 
static enum valid_equiv validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
 
static bool equiv_init_movable_p (rtx x, int regno)
 
static bool memref_referenced_p (rtx memref, rtx x, bool read_p)
 
static bool process_set_for_memref_referenced_p (rtx memref, rtx x)
 
static bool memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
 
static void no_equiv (rtx reg, const_rtx store, void *data)
 
static void set_paradoxical_subreg (rtx_insn *insn)
 
static rtx adjust_cleared_regs (rtx loc, const_rtx old_rtx, void *data)
 
static bool def_dominates_uses (int regno)
 
static void update_equiv_regs_prescan (void)
 
static void update_equiv_regs (void)
 
static void add_store_equivs (void)
 
static void combine_and_move_insns (void)
 
static void indirect_jump_optimize (void)
 
static void setup_reg_equiv (void)
 
static void print_insn_chain (FILE *file, class insn_chain *c)
 
static void print_insn_chains (FILE *file)
 
static bool pseudo_for_reload_consideration_p (int regno)
 
static bool get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size, HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
 
static void init_live_subregs (bool init_value, sbitmap *live_subregs, bitmap live_subregs_used, int allocnum, int size)
 
static void build_insn_chain (void)
 
static bool rtx_moveable_p (rtx *loc, enum op_type type)
 
static bool insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
 
static void find_moveable_pseudos (void)
 
static rtx interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
 
static rtx interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
 
static bool split_live_ranges_for_shrink_wrap (void)
 
static void move_unallocated_pseudos (void)
 
bool ira_former_scratch_p (int regno)
 
bool ira_former_scratch_operand_p (rtx_insn *insn, int nop)
 
void ira_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
 
static bool contains_X_constraint_p (const char *str)
 
bool ira_remove_insn_scratches (rtx_insn *insn, bool all_p, FILE *dump_file, rtx(*get_reg)(rtx original))
 
static rtx get_scratch_reg (rtx original)
 
static bool remove_scratches (void)
 
void ira_restore_scratches (FILE *dump_file)
 
static void allocate_initial_values (void)
 
static void setup_hard_regno_nrefs (void)
 
static void ira (FILE *f)
 
void ira_nullify_asm_goto (rtx_insn *insn)
 
static void do_reload (void)
 
rtl_opt_passmake_pass_ira (gcc::context *ctxt)
 
rtl_opt_passmake_pass_reload (gcc::context *ctxt)
 

Variables

struct target_ira default_target_ira
 
class target_ira_int default_target_ira_int
 
int internal_flag_ira_verbose
 
FILE * ira_dump_file
 
int ira_spilled_reg_stack_slots_num
 
class ira_spilled_reg_stack_slotira_spilled_reg_stack_slots
 
int64_t ira_overall_cost
 
int64_t overall_cost_before
 
int64_t ira_reg_cost
 
int64_t ira_mem_cost
 
int64_t ira_load_cost
 
int64_t ira_store_cost
 
int64_t ira_shuffle_cost
 
int ira_move_loops_num
 
int ira_additional_jumps_num
 
HARD_REG_SET eliminable_regset
 
static int max_regno_before_ira
 
static HARD_REG_SET temp_hard_regset
 
static struct bitmap_obstack ira_bitmap_obstack
 
static int allocno_class_order [N_REG_CLASSES]
 
short * reg_renumber
 
static int allocated_reg_info_size
 
int ira_reg_equiv_len
 
struct ira_reg_equiv_sira_reg_equiv
 
static struct equivalencereg_equiv
 
int first_moveable_pseudo
 
int last_moveable_pseudo
 
static vec< rtxpseudo_replaced_reg
 
static vec< sloc_tscratches
 
static bitmap_head scratch_bitmap
 
static bitmap_head scratch_operand_bitmap
 
bool ira_use_lra_p
 
bool ira_conflicts_p
 
static int saved_flag_ira_share_spill_slots
 
bool ira_in_progress = false
 

Macro Definition Documentation

◆ alloc_reg_class_subclasses

#define alloc_reg_class_subclasses    (this_target_ira_int->x_alloc_reg_class_subclasses)

◆ IRA_NO_OBSTACK

#define IRA_NO_OBSTACK
Define the following macro if allocation through malloc if preferable.

◆ ira_prohibited_mode_move_regs_initialized_p

#define ira_prohibited_mode_move_regs_initialized_p    (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)

◆ last_mode_for_init_move_cost

#define last_mode_for_init_move_cost    (this_target_ira_int->x_last_mode_for_init_move_cost)

◆ no_unit_alloc_regs

Typedef Documentation

◆ sloc_t

typedef struct sloc* sloc_t

Enumeration Type Documentation

◆ valid_equiv

Enumerator
valid_none 
valid_combine 
valid_reload 

Function Documentation

◆ add_store_equivs()

static void add_store_equivs ( void )
static
For insns that set a MEM to the contents of a REG that is only used in a single basic block, see if the register is always equivalent to that memory location and if moving the store from INSN to the insn that sets REG is safe. If so, put a REG_EQUIV note on the initializing insn.

References bitmap_bit_p, bitmap_clear(), bitmap_set_bit, copy_rtx(), df_notes_rescan(), DF_REG_DEF_COUNT, dump_file, find_reg_note(), gen_rtx_INSN_LIST(), get_insns(), get_max_uid(), df_insn_info::insn, INSN_P, INSN_UID(), ira_reg_equiv, MEM_P, memref_used_between_p(), NEXT_INSN(), NULL, NULL_RTX, NUM_FIXED_BLOCKS, REG_BASIC_BLOCK, reg_equiv, REG_P, REGNO, SET_DEST, SET_SRC, set_unique_reg_note(), single_set(), valid_reload, and validate_equiv_mem().

Referenced by ira().

◆ adjust_cleared_regs()

static rtx adjust_cleared_regs ( rtx loc,
const_rtx old_rtx,
void * data )
static
In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the equivalent replacement.

References adjust_cleared_regs(), bitmap_bit_p, copy_rtx(), NULL_RTX, reg_equiv, REG_P, REGNO, and simplify_replace_fn_rtx().

Referenced by adjust_cleared_regs(), and combine_and_move_insns().

◆ allocate_initial_values()

static void allocate_initial_values ( void )
static
If the backend knows where to allocate pseudos for hard register initial values, register these allocations now.

References cfun, df_get_live_in(), df_get_live_out(), FOR_EACH_BB_FN, gcc_assert, gcc_checking_assert, HARD_REGISTER_NUM_P, i, initial_value_entry(), MEM_P, reg_equiv_memory_loc, REG_N_SETS(), REG_P, reg_renumber, REGNO, sloc::regno, REGNO_REG_SET_P, SET_REGNO, SET_REGNO_REG_SET, and targetm.

Referenced by ira().

◆ build_insn_chain()

◆ calculate_allocation_cost()

◆ clarify_prohibited_class_mode_regs()

static void clarify_prohibited_class_mode_regs ( void )
static
Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers spanning from one register pressure class to another one. It is called after defining the pressure classes.

References add_to_hard_reg_set(), CLEAR_HARD_REG_SET, hard_regno_nregs(), ira_class_hard_regs, ira_class_hard_regs_num, ira_pressure_class_translate, ira_prohibited_class_mode_regs, ira_useful_class_mode_regs, SET_HARD_REG_BIT, and TEST_HARD_REG_BIT.

Referenced by ira_init().

◆ combine_and_move_insns()

static void combine_and_move_insns ( void )
static
Scan all regs killed in an insn to see if any of them are registers only used that once. If so, see if we can replace the reference with the equivalent form. If we can, delete the initializing reference and this register will go away. If we can't replace the reference, and the initializing reference is within the same loop (or in an inner loop), then move the register initialization just before the use, so that they are in the same basic block.

References adjust_cleared_regs(), asm_noperands(), BB_HEAD, bb_loop_depth(), bitmap_and_compl_into(), bitmap_empty_p(), bitmap_set_bit, BLOCK_FOR_INSN(), can_throw_internal(), cfun, DEBUG_BIND_INSN_P, DEBUG_INSN_P, delete_insn(), df_insn_rescan(), df_live, DF_LIVE_IN, DF_LIVE_OUT, DF_LR_IN, DF_LR_OUT, DF_REF_INSN, DF_REF_INSN_INFO, DF_REF_NEXT_REG, DF_REF_REGNO, DF_REG_DEF_CHAIN, DF_REG_DEF_COUNT, DF_REG_USE_CHAIN, emit_insn_before(), find_reg_note(), FOR_EACH_BB_FN, FOR_EACH_INSN_USE, gcc_assert, gen_rtx_INSN_LIST(), GET_CODE, get_insns(), HARD_REGISTER_NUM_P, basic_block_def::index, df_insn_info::insn, INSN_CODE, INSN_VAR_LOCATION_LOC, ira_reg_equiv, JUMP_P, max_reg_num(), MAY_HAVE_DEBUG_BIND_INSNS, multiple_sets(), NEXT_INSN(), no_equiv(), NULL, NULL_RTX, PATTERN(), prev_nondebug_insn(), REG_BASIC_BLOCK, reg_equiv, REG_FREQ, REG_N_CALLS_CROSSED, REG_NOTE_KIND, REG_NOTES, REG_P, regno_reg_rtx, remove_death(), SET_DEST, SET_REG_N_REFS, simplify_replace_fn_rtx(), single_set(), validate_replace_rtx(), and XEXP.

Referenced by ira().

◆ comp_reg_classes_func()

static int comp_reg_classes_func ( const void * v1p,
const void * v2p )
static
The function used to sort the important classes.

References allocno_class_order, and ira_allocno_class_translate.

Referenced by reorder_important_classes().

◆ compute_regs_asm_clobbered()

static void compute_regs_asm_clobbered ( void )
static

◆ contains_X_constraint_p()

static bool contains_X_constraint_p ( const char * str)
static
Return true if string STR contains constraint 'X'.

Referenced by ira_remove_insn_scratches().

◆ decrease_live_ranges_number()

static void decrease_live_ranges_number ( void )
static
Search forward to see if the source register of a copy insn dies before either it or the destination register is modified, but don't scan past the end of the basic block. If so, we can replace the source with the destination and let the source die in the copy insn. This will reduce the number of registers live in that range and may enable the destination and the source coalescing, thus often saving one register in addition to a register-register copy.

References asm_noperands(), BLOCK_FOR_INSN(), CALL_P, cfun, dead_or_set_p(), find_reg_fusage(), find_reg_note(), find_regno_note(), FOR_BB_INSNS, FOR_EACH_BB_FN, GET_CODE, GET_MODE, INSN_P, ira_dump_file, NEXT_INSN(), next_real_insn(), NULL_RTX, PATTERN(), PUT_REG_NOTE_KIND, reg_mentioned_p(), REG_NOTES, reg_overlap_mentioned_p(), REG_P, reg_set_p(), REGNO, remove_note(), SET_DEST, SET_SRC, single_set(), targetm, validate_replace_rtx(), and XEXP.

Referenced by ira().

◆ def_dominates_uses()

static bool def_dominates_uses ( int regno)
static
Given register REGNO is set only once, return true if the defining insn dominates all uses.

References BLOCK_FOR_INSN(), CDI_DOMINATORS, DEBUG_INSN_P, DF_INSN_INFO_LUID, DF_REF_INSN, DF_REF_INSN_INFO, DF_REF_NEXT_REG, DF_REG_DEF_CHAIN, DF_REG_DEF_COUNT, DF_REG_USE_CHAIN, dominated_by_p(), gcc_assert, and NULL.

Referenced by update_equiv_regs().

◆ do_reload()

◆ equiv_init_movable_p()

static bool equiv_init_movable_p ( rtx x,
int regno )
static
Returns true if X (used to initialize register REGNO) is movable. X is only movable if the registers it uses have equivalent initializations which appear to be within the same loop (or in an inner loop) and movable or if they are not candidates for local_alloc and don't vary.

References equiv_init_movable_p(), GET_CODE, GET_RTX_FORMAT, GET_RTX_LENGTH, i, loop_depth(), MEM_VOLATILE_P, NUM_FIXED_BLOCKS, REG_BASIC_BLOCK, reg_equiv, REGNO, rtx_varies_p(), SET, SET_SRC, XEXP, XVECEXP, and XVECLEN.

Referenced by equiv_init_movable_p(), and update_equiv_regs().

◆ equiv_init_varies_p()

static bool equiv_init_varies_p ( rtx x)
static

◆ expand_reg_info()

static void expand_reg_info ( void )
static
Regional allocation can create new pseudo-registers. This function expands some arrays for pseudo-registers.

References allocated_reg_info_size, i, max_reg_num(), resize_reg_info(), setup_preferred_alternate_classes_for_new_pseudos(), and setup_reg_classes().

Referenced by find_moveable_pseudos(), and ira().

◆ find_moveable_pseudos()

static void find_moveable_pseudos ( void )
static
Look for instances where we have an instruction that is known to increase register pressure, and whose result is not used immediately. If it is possible to move the instruction downwards to just before its first use, split its lifetime into two ranges. We create a new pseudo to compute the value, and emit a move instruction just before the first use. If, after register allocation, the new pseudo remains unallocated, the function move_unallocated_pseudos then deletes the move instruction and places the computation just before the first use. Such a move is safe and profitable if all the input registers remain live and unchanged between the original computation and its first use. In such a situation, the computation is known to increase register pressure, and moving it is known to at least not worsen it. We restrict moves to only those cases where a register remains unallocated, in order to avoid interfering too much with the instruction schedule. As an exception, we may move insns which only modify their input register (typically induction variables), as this increases the freedom for our intended transformation, and does not limit the second instruction scheduler pass.

References as_a(), bitmap_and_into(), bitmap_bit_p, bitmap_clear(), bitmap_clear_bit(), bitmap_copy(), bitmap_initialize(), bitmap_set_bit, BLOCK_FOR_INSN(), calculate_dominance_info(), CDI_DOMINATORS, cfun, const0_rtx, control_flow_insn_p(), dbg_cnt(), DEBUG_INSN_P, df_analyze(), df_get_live_in(), df_get_live_out(), DF_INSN_INFO_GET, DF_REF_INSN, DF_REF_INSN_INFO, DF_REF_NEXT_REG, DF_REF_REAL_LOC, DF_REF_REG, DF_REF_REGNO, DF_REG_DEF_CHAIN, DF_REG_DEF_COUNT, DF_REG_EQ_USE_COUNT, DF_REG_USE_CHAIN, df_single_def(), df_single_use(), dump_file, emit_insn_after(), emit_insn_before(), EXECUTE_IF_SET_IN_BITMAP, expand_reg_info(), first_moveable_pseudo, fix_reg_equiv_init(), FLOAT_MODE_P, FOR_BB_INSNS, FOR_EACH_BB_FN, FOR_EACH_INSN_INFO_DEF, FOR_EACH_INSN_INFO_USE, FOR_EACH_INSN_USE, free(), free_dominance_info(), gcc_assert, gen_move_insn(), get_max_uid(), GET_MODE, HARD_REGISTER_NUM_P, i, basic_block_def::index, df_insn_info::insn, insn_dominated_by_p(), INSN_UID(), INTEGRAL_MODE_P, ira_create_new_reg(), last_basic_block_for_fn, last_moveable_pseudo, max_reg_num(), max_uid, MEM_P, modified_between_p(), modified_in_p(), NEXT_INSN(), next_nonnote_nondebug_insn(), NONDEBUG_INSN_P, NULL, NULL_RTX, OP_IN, OPAQUE_MODE_P, PATTERN(), pseudo_replaced_reg, reg_equiv_init, REG_NOTE_KIND, REG_NOTES, REG_P, REGNO, regstat_compute_ri(), regstat_free_n_sets_and_refs(), regstat_free_ri(), regstat_init_n_sets_and_refs(), rtx_moveable_p(), set_insn_deleted(), single_set(), transp, validate_change(), and XEXP.

Referenced by ira().

◆ find_reg_classes()

static void find_reg_classes ( void )
static
Set up different arrays concerning class subsets, allocno and important classes.

References reorder_important_classes(), setup_allocno_and_important_classes(), setup_class_translate(), and setup_reg_class_relations().

Referenced by ira_init().

◆ finish_reg_equiv()

static void finish_reg_equiv ( void )
static

References free(), and ira_reg_equiv.

Referenced by do_reload().

◆ fix_reg_equiv_init()

static void fix_reg_equiv_init ( void )
static

◆ get_scratch_reg()

static rtx get_scratch_reg ( rtx original)
static
Return new register of the same mode as ORIGINAL. Used in remove_scratches.

References gen_reg_rtx(), and GET_MODE.

Referenced by remove_insn_scratches(), and remove_scratches().

◆ get_subreg_tracking_sizes()

static bool get_subreg_tracking_sizes ( rtx x,
HOST_WIDE_INT * outer_size,
HOST_WIDE_INT * inner_size,
HOST_WIDE_INT * start )
static
Return true if we can track the individual bytes of subreg X. When returning true, set *OUTER_SIZE to the number of bytes in X itself, *INNER_SIZE to the number of bytes in the inner register and *START to the offset of the first byte.

References GET_MODE, GET_MODE_SIZE(), REGNO, regno_reg_rtx, SUBREG_BYTE, and SUBREG_REG.

Referenced by build_insn_chain().

◆ indirect_jump_optimize()

static void indirect_jump_optimize ( void )
static
A pass over indirect jumps, converting simple cases to direct jumps. Combine does this optimization too, but only within a basic block.

References BB_END, cfun, delete_unreachable_blocks(), DF_REF_INSN, DF_REF_IS_ARTIFICIAL, DF_REG_DEF_CHAIN, DF_REG_DEF_COUNT, find_reg_note(), FOR_EACH_BB_REVERSE_FN, GET_CODE, get_insns(), df_insn_info::insn, JUMP_P, NULL_RTX, pc_set(), purge_all_dead_edges(), rebuild_jump_labels(), REG_P, REGNO, SET_SRC, single_set(), timevar_pop(), timevar_push(), validate_replace_rtx(), and XEXP.

Referenced by ira().

◆ init_live_subregs()

static void init_live_subregs ( bool init_value,
sbitmap * live_subregs,
bitmap live_subregs_used,
int allocnum,
int size )
static
Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for a register with SIZE bytes, making the register live if INIT_VALUE.

References bitmap_bit_p, bitmap_clear(), bitmap_ones(), bitmap_set_bit, gcc_assert, NULL, and sbitmap_alloc().

Referenced by build_insn_chain().

◆ init_reg_equiv()

static void init_reg_equiv ( void )
static

◆ insn_dominated_by_p()

static bool insn_dominated_by_p ( rtx i1,
rtx i2,
int * uid_luid )
static
A wrapper around dominated_by_p, which uses the information in UID_LUID to give dominance relationships between two insns I1 and I2.

References BLOCK_FOR_INSN(), CDI_DOMINATORS, dominated_by_p(), i1, i2, and INSN_UID().

Referenced by find_moveable_pseudos().

◆ interesting_dest_for_shprep()

static rtx interesting_dest_for_shprep ( rtx_insn * insn,
basic_block call_dom )
static
If insn is interesting for parameter range-splitting shrink-wrapping preparation, i.e. it is a single set from a hard register to a pseudo, which is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a parallel statement with only one such statement, return the destination. Otherwise return NULL.

References GET_CODE, i, df_insn_info::insn, INSN_P, interesting_dest_for_shprep_1(), NULL, PATTERN(), SET, side_effects_p(), XVECEXP, and XVECLEN.

Referenced by split_live_ranges_for_shrink_wrap().

◆ interesting_dest_for_shprep_1()

static rtx interesting_dest_for_shprep_1 ( rtx set,
basic_block call_dom )
static
If SET pattern SET is an assignment from a hard register to a pseudo which is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return the destination. Otherwise return NULL.

References bitmap_bit_p, df_get_live_in(), HARD_REGISTER_P, NULL, REG_P, REGNO, SET_DEST, and SET_SRC.

Referenced by interesting_dest_for_shprep().

◆ ira()

static void ira ( FILE * f)
static
This is the main entry of IRA.

References a, add_store_equivs(), allocate_initial_values(), allocated_reg_info_size, ALLOCNO_EMIT_DATA, ALLOCNO_REGNO, AVOID_CFG_MODIFICATIONS, BB_END, bitmap_obstack_initialize(), calculate_allocation_cost(), calculate_dominance_info(), CDI_DOMINATORS, cfun, clear_bb_flags(), combine_and_move_insns(), commit_edge_insertions(), const1_rtx, crtl, current_loops, decrease_live_ranges_number(), delete_trivially_dead_insns(), df, df_analyze(), df_clear_flags(), df_live, DF_NO_INSN_RESCAN, df_note_add_problem(), DF_REG_DEF_COUNT, DF_REG_SIZE, DF_REG_USE_COUNT, df_remove_problem(), DF_VERIFY_SCHEDULED, EDGE_CRITICAL_P, emit_insn(), end(), end_alias_analysis(), end_sequence(), EXIT_BLOCK_PTR_FOR_FN, expand_reg_info(), extract_insn(), find_moveable_pseudos(), fix_reg_equiv_init(), FOR_EACH_ALLOCNO, FOR_EACH_BB_FN, FOR_EACH_EDGE, free(), free_dominance_info(), gcc_assert, gcc_checking_assert, gcc_obstack_init, generate_setjmp_warnings(), get_insns(), get_max_uid(), grow_reg_equivs(), i, indirect_jump_optimize(), init_alias_analysis(), init_caller_save(), init_reg_equiv(), insert_insn_on_edge(), insns, internal_flag_ira_verbose, ira_additional_jumps_num, ira_allocate(), ira_assert, ira_bitmap_obstack, ira_build(), ira_color(), ira_conflicts_p, ira_dump_file, ira_emit(), ira_expand_reg_equiv(), ira_finish_emit_data(), ira_flattening(), ira_initiate_assign(), ira_initiate_emit_data(), ira_load_cost, ira_max_point, ira_mem_cost, ira_move_loops_num, ira_overall_cost, ira_reassign_conflict_allocnos(), ira_reg_cost, IRA_REGION_ALL, IRA_REGION_MIXED, IRA_REGION_ONE, ira_set_pseudo_classes(), ira_setup_eliminable_regset(), ira_shuffle_cost, ira_spilled_reg_stack_slots, ira_spilled_reg_stack_slots_num, ira_store_cost, ira_use_lra_p, JUMP_P, last_basic_block_for_fn, leaf_function_p(), loop_optimizer_finalize(), loop_optimizer_init(), LOOPS_HAVE_RECORDED_EXITS, lra_simple_p, max_reg_num(), max_regno, max_regno_before_ira, move_unallocated_pseudos(), NULL, OP_IN, overall_cost_before, recog_data, reg_allocno_class(), reg_alternate_class(), reg_equiv, reg_preferred_class(), REGNO, regstat_compute_ri(), regstat_free_n_sets_and_refs(), regstat_free_ri(), regstat_init_n_sets_and_refs(), remove_scratches(), resize_reg_info(), saved_flag_ira_share_spill_slots, setup_allocno_assignment_flags(), setup_hard_regno_nrefs(), setup_prohibited_mode_move_regs(), setup_reg_classes(), setup_reg_equiv(), setup_reg_equiv_init(), setup_reg_renumber(), split_live_ranges_for_shrink_wrap(), start_sequence(), basic_block_def::succs, targetm, too_high_register_pressure_p(), update_equiv_regs(), and update_equiv_regs_prescan().

◆ ira_allocate()

◆ ira_allocate_bitmap()

◆ ira_bad_reload_regno()

bool ira_bad_reload_regno ( int regno,
rtx in,
rtx out )
Return nonzero if REGNO is a particularly bad choice for reloading IN or OUT.

References ira_bad_reload_regno_1().

Referenced by allocate_reload_reg().

◆ ira_bad_reload_regno_1()

static bool ira_bad_reload_regno_1 ( int regno,
rtx x )
static

◆ ira_debug_allocno_classes()

void ira_debug_allocno_classes ( void )
Output all possible allocno and translation classes and the translation maps into stderr.

References print_translated_classes(), and print_uniform_and_important_classes().

◆ ira_debug_disposition()

void ira_debug_disposition ( void )
Outputs information about allocation of all allocnos into stderr.

References ira_print_disposition().

◆ ira_expand_reg_equiv()

void ira_expand_reg_equiv ( void )

◆ ira_former_scratch_operand_p()

bool ira_former_scratch_operand_p ( rtx_insn * insn,
int nop )
Return true if the operand NOP of INSN is a former scratch.

References bitmap_bit_p, sloc::insn, INSN_UID(), sloc::nop, and scratch_operand_bitmap.

◆ ira_former_scratch_p()

◆ ira_free()

◆ ira_free_bitmap()

◆ ira_get_dup_out_num()

int ira_get_dup_out_num ( int op_num,
alternative_mask alts,
bool & single_input_op_has_cstr_p )
Return the number of the output non-early clobber operand which should be the same in any case as operand with number OP_NUM (or negative value if there is no such operand). ALTS is the mask of alternatives that we should consider. SINGLE_INPUT_OP_HAS_CSTR_P should be set in this function, it indicates whether there is only a single input operand which has the matching constraint on the output operand at the position specified in return value. If the pattern allows any one of several input operands holds the matching constraint, it's set as false, one typical case is destructive FMA instruction on target rs6000. Note that for a non-NO_REG preferred register class with no free register move copy, if the parameter PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to one, this function will check all available alternatives for matching constraints, even if it has found or will find one alternative with non-NO_REG regclass, it can respect more cases with matching constraints. If PARAM_IRA_CONSIDER_DUP_IN_ALL_ALTS is set to zero, SINGLE_INPUT_OP_HAS_CSTR_P is always true, it will stop to find matching constraint relationship once it hits some alternative with some non-NO_REG regclass.

References ALTERNATIVE_BIT, end(), gcc_assert, GET_MODE, ira_init_register_move_cost_if_necessary(), ira_may_move_in_cost, ira_reg_class_intersect, ira_register_move_cost, OP_IN, OP_OUT, recog_data, recog_op_alt, reg_or_subregno(), reg_preferred_class(), targetm, and TEST_BIT.

Referenced by add_insn_allocno_copies().

◆ ira_init()

◆ ira_init_once()

void ira_init_once ( void )
This is called once during compiler work. It sets up different arrays whose values don't depend on the compiled function.

References ira_init_costs_once(), ira_use_lra_p, lra_init_once(), and targetm.

Referenced by initialize_rtl().

◆ ira_init_register_move_cost()

◆ ira_nullify_asm_goto()

void ira_nullify_asm_goto ( rtx_insn * insn)
Modify asm goto to avoid further trouble with this insn. We can not replace the insn by USE as in other asm insns as we still need to keep CFG consistency.

References ASM_OPERANDS_LABEL_VEC, ASM_OPERANDS_SOURCE_LOCATION, extract_asm_operands(), ggc_strdup, INSN_CODE, ira_assert, JUMP_P, PATTERN(), and rtvec_alloc().

Referenced by curr_insn_transform(), find_reloads(), and lra_asm_insn_error().

◆ ira_print_disposition()

void ira_print_disposition ( FILE * f)
Output information about allocation of all allocnos (except for caps) into file F.

References a, ALLOCNO_HARD_REGNO, ALLOCNO_LOOP_TREE_NODE, ALLOCNO_NEXT_REGNO_ALLOCNO, ALLOCNO_NUM, ALLOCNO_REGNO, i, basic_block_def::index, ira_regno_allocno_map, max_reg_num(), max_regno, and NULL.

Referenced by do_coloring(), fast_allocation(), and ira_debug_disposition().

◆ ira_register_new_scratch_op()

void ira_register_new_scratch_op ( rtx_insn * insn,
int nop,
int icode )
Register operand NOP in INSN as a former scratch. It will be changed to scratch back, if it is necessary, at the LRA end.

References add_reg_note(), bitmap_set_bit, sloc::icode, sloc::insn, INSN_UID(), ira_assert, sloc::nop, recog_data, REG_P, REGNO, sloc::regno, scratch_bitmap, scratch_operand_bitmap, and scratches.

Referenced by ira_remove_insn_scratches(), and update_scratch_ops().

◆ ira_remove_insn_scratches()

bool ira_remove_insn_scratches ( rtx_insn * insn,
bool all_p,
FILE * dump_file,
rtx(* get_reg )(rtx original) )
Change INSN's scratches into pseudos and save their location. Return true if we changed any scratch.

References contains_X_constraint_p(), dump_file, extract_insn(), GET_CODE, GET_MODE, i, sloc::insn, INSN_CODE, INSN_UID(), ira_dump_file, ira_register_new_scratch_op(), NULL, recog_data, and REGNO.

Referenced by remove_insn_scratches(), and remove_scratches().

◆ ira_restore_scratches()

void ira_restore_scratches ( FILE * dump_file)

◆ ira_setup_alts()

alternative_mask ira_setup_alts ( rtx_insn * insn)
Extract INSN and return the set of alternatives that we should consider. This excludes any alternatives whose constraints are obviously impossible to meet (e.g. because the constraint requires a constant and the operand is nonconstant). It also excludes alternatives that are bound to need a spill or reload, as long as we have other alternatives that match exactly.

References ALTERNATIVE_BIT, CHAR_BIT, CONST_INT_P, operand_alternative::constraint, curr_swapped, end(), extract_insn(), extract_mem_from_operand(), get_preferred_alternatives(), INTVAL, ira_assert, MAX, MEM_P, NULL, preprocess_constraints(), recog_data, recog_op_alt, REG_P, operand_alternative::reject, rtx_equal_p(), SUBREG_P, and TEST_BIT.

Referenced by add_insn_allocno_copies(), and process_bb_node_lives().

◆ ira_setup_eliminable_regset()

◆ ira_update_equiv_info_by_shuffle_insn()

void ira_update_equiv_info_by_shuffle_insn ( int to_regno,
int from_regno,
rtx_insn * insns )
Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS are insns which were generated for such movement. It is assumed that FROM_REGNO and TO_REGNO always have the same value at the point of any move containing such registers. This function is used to update equiv info for register shuffles on the region borders and for caller save/restore insns.

References copy_rtx(), dump_value_slim(), find_reg_note(), gcc_assert, gen_rtx_INSN_LIST(), INSN_UID(), insns, internal_flag_ira_verbose, ira_assert, ira_dump_file, ira_reg_equiv, MEM_READONLY_P, NEXT_INSN(), NULL, NULL_RTX, rtx_equal_p(), and set_unique_reg_note().

Referenced by emit_move_list().

◆ make_pass_ira()

rtl_opt_pass * make_pass_ira ( gcc::context * ctxt)

◆ make_pass_reload()

rtl_opt_pass * make_pass_reload ( gcc::context * ctxt)

◆ mark_elimination()

void mark_elimination ( int from,
int to )
Indicate that hard register number FROM was eliminated and replaced with an offset from hard register number TO. The status of hard registers live at the start of a basic block is updated by replacing a use of FROM with a use of TO.

References bitmap_bit_p, bitmap_clear_bit(), bitmap_set_bit, cfun, df_live, DF_LIVE_IN, DF_LR_IN, FOR_EACH_BB_FN, and r.

Referenced by reload().

◆ memref_referenced_p()

static bool memref_referenced_p ( rtx memref,
rtx x,
bool read_p )
static
TRUE if X references a memory location (as a read if READ_P) that would be affected by a store to MEMREF.

References CASE_CONST_ANY, GET_CODE, GET_RTX_FORMAT, GET_RTX_LENGTH, i, memref_referenced_p(), process_set_for_memref_referenced_p(), reg_equiv, REGNO, SET, SET_DEST, SET_SRC, true_dependence(), XEXP, XVECEXP, and XVECLEN.

Referenced by memref_referenced_p(), memref_used_between_p(), and process_set_for_memref_referenced_p().

◆ memref_used_between_p()

static bool memref_used_between_p ( rtx memref,
rtx_insn * start,
rtx_insn * end )
static
TRUE if some insn in the range (START, END] references a memory location that would be affected by a store to MEMREF. Callers should not call this routine if START is after END in the RTL chain.

References CALL_P, end(), gcc_assert, memref_referenced_p(), NEXT_INSN(), NONDEBUG_INSN_P, PATTERN(), and RTL_CONST_CALL_P.

Referenced by add_store_equivs().

◆ move_unallocated_pseudos()

static void move_unallocated_pseudos ( void )
static
Perform the second half of the transformation started in find_moveable_pseudos. We look for instances where the newly introduced pseudo remains unallocated, and remove it by moving the definition to just before its use, replacing the move instruction generated by find_moveable_pseudos.

References delete_insn(), DF_REF_INSN, DF_REG_DEF_CHAIN, dump_file, emit_insn_after(), first_moveable_pseudo, gcc_assert, i, INSN_UID(), last_moveable_pseudo, PATTERN(), pseudo_replaced_reg, reg_renumber, REGNO, SET_DEST, SET_REG_N_REFS, single_set(), and validate_change().

Referenced by ira().

◆ no_equiv()

static void no_equiv ( rtx reg,
const_rtx store,
void * data )
static
Mark REG as having no known equivalence. Some instructions might have been processed before and furnished with REG_EQUIV notes for this register; these notes will have to be removed. STORE is the piece of RTL that does the non-constant / conflicting assignment - a SET, CLOBBER or REG_INC note. It is currently not used, but needs to be there because this function is called from note_stores.

References find_reg_note(), gen_rtx_INSN_LIST(), rtx_insn_list::insn(), ira_reg_equiv, rtx_insn_list::next(), NULL, NULL_RTX, reg_equiv, REG_P, REGNO, and remove_note().

Referenced by combine_and_move_insns(), and update_equiv_regs().

◆ print_insn_chain()

static void print_insn_chain ( FILE * file,
class insn_chain * c )
static
Print chain C to FILE.

References bitmap_print(), and INSN_UID().

Referenced by print_insn_chains().

◆ print_insn_chains()

static void print_insn_chains ( FILE * file)
static
Print all reload_insn_chains to FILE.

References print_insn_chain(), and reload_insn_chain.

Referenced by build_insn_chain().

◆ print_translated_classes()

static void print_translated_classes ( FILE * f,
bool pressure_p )
static
Output all possible allocno or pressure classes and their translation map into file F.

References i, ira_allocno_class_translate, ira_allocno_classes, ira_allocno_classes_num, ira_pressure_class_translate, ira_pressure_classes, ira_pressure_classes_num, and reg_class_names.

Referenced by ira_debug_allocno_classes().

◆ print_uniform_and_important_classes()

static void print_uniform_and_important_classes ( FILE * f)
static
Output all uniform and important classes into file F.

References i, ira_important_classes, ira_important_classes_num, ira_uniform_class_p, and reg_class_names.

Referenced by ira_debug_allocno_classes().

◆ process_set_for_memref_referenced_p()

static bool process_set_for_memref_referenced_p ( rtx memref,
rtx x )
static
Auxiliary function for memref_referenced_p. Process setting X for MEMREF store.

References MEM_P, memref_referenced_p(), and XEXP.

Referenced by memref_referenced_p().

◆ pseudo_for_reload_consideration_p()

static bool pseudo_for_reload_consideration_p ( int regno)
static
Return true if pseudo REGNO should be added to set live_throughout or dead_or_set of the insn chains for reload consideration.

References ira_conflicts_p, and reg_renumber.

Referenced by build_insn_chain().

◆ remove_scratches()

static bool remove_scratches ( void )
static
Change scratches into pseudos and save their location. Return true if we changed any scratch.

References bitmap_initialize(), cfun, df_insn_rescan(), FOR_BB_INSNS, FOR_EACH_BB_FN, get_max_uid(), get_scratch_reg(), sloc::insn, INSN_P, ira_dump_file, ira_remove_insn_scratches(), reg_obstack, scratch_bitmap, scratch_operand_bitmap, and scratches.

Referenced by ira().

◆ reorder_important_classes()

static void reorder_important_classes ( void )
static
For correct work of function setup_reg_class_relation we need to reorder important classes according to the order of their allocno classes. It places important classes containing the same allocatable hard register set adjacent to each other and allocno class with the allocatable hard register set right after the other important classes with the same set. In example from comments of function setup_allocno_and_important_classes, it places LEGACY_REGS and GENERAL_REGS close to each other and GENERAL_REGS is after LEGACY_REGS.

References allocno_class_order, comp_reg_classes_func(), i, ira_allocno_classes, ira_allocno_classes_num, ira_important_class_nums, ira_important_classes, ira_important_classes_num, and qsort.

Referenced by find_reg_classes().

◆ rtx_moveable_p()

static bool rtx_moveable_p ( rtx * loc,
enum op_type type )
static
Examine the rtx found in *LOC, which is read or written to as determined by TYPE. Return false if we find a reason why an insn containing this rtx should not be moved (such as accesses to non-constant memory), true otherwise.

References CASE_CONST_ANY, frame_pointer_rtx, GET_CODE, GET_RTX_FORMAT, GET_RTX_LENGTH, HARD_REGISTER_P, i, MEM_READONLY_P, MEM_VOLATILE_P, OP_IN, OP_OUT, rtx_moveable_p(), SET, SET_DEST, SET_SRC, XEXP, XVECEXP, and XVECLEN.

Referenced by find_moveable_pseudos(), and rtx_moveable_p().

◆ set_paradoxical_subreg()

static void set_paradoxical_subreg ( rtx_insn * insn)
static
Check whether the SUBREG is a paradoxical subreg and set the result in PDX_SUBREGS.

References FOR_EACH_SUBRTX, GET_CODE, paradoxical_subreg_p(), PATTERN(), reg_equiv, REG_P, REGNO, and SUBREG_REG.

Referenced by update_equiv_regs_prescan().

◆ setup_alloc_regs()

static void setup_alloc_regs ( bool use_hard_frame_p)
static
Set up global variables defining info about hard registers for the allocation. These depend on USE_HARD_FRAME_P whose TRUE value means that we can use the hard frame pointer for the allocation.

References add_to_hard_reg_set(), fixed_nonglobal_reg_set, HARD_FRAME_POINTER_REGNUM, no_unit_alloc_regs, and setup_class_hard_regs().

Referenced by ira_init().

◆ setup_allocno_and_important_classes()

static void setup_allocno_and_important_classes ( void )
static
Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM, IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM. Target may have many subtargets and not all target hard registers can be used for allocation, e.g. x86 port in 32-bit mode cannot use hard registers introduced in x86-64 like r8-r15). Some classes might have the same allocatable hard registers, e.g. INDEX_REGS and GENERAL_REGS in x86 port in 32-bit mode. To decrease different calculations efforts we introduce allocno classes which contain unique non-empty sets of allocatable hard-registers. Pseudo class cost calculation in ira-costs.cc is very expensive. Therefore we are trying to decrease number of classes involved in such calculation. Register classes used in the cost calculation are called important classes. They are allocno classes and other non-empty classes whose allocatable hard register sets are inside of an allocno class hard register set. From the first sight, it looks like that they are just allocno classes. It is not true. In example of x86-port in 32-bit mode, allocno classes will contain GENERAL_REGS but not LEGACY_REGS (because allocatable hard registers are the same for the both classes). The important classes will contain GENERAL_REGS and LEGACY_REGS. It is done because a machine description insn constraint may refers for LEGACY_REGS and code in ira-costs.cc is mostly base on investigation of the insn constraints.

References hard_reg_set_subset_p(), i, ira_allocno_classes, ira_allocno_classes_num, ira_class_hard_regs_num, ira_important_classes, ira_important_classes_num, ira_reg_allocno_class_p, ira_reg_pressure_class_p, no_unit_alloc_regs, reg_class_contents, setup_pressure_classes(), setup_uniform_class_p(), targetm, and temp_hard_regset.

Referenced by find_reg_classes().

◆ setup_allocno_assignment_flags()

static void setup_allocno_assignment_flags ( void )
static

◆ setup_class_hard_regs()

◆ setup_class_subset_and_memory_move_costs()

static void setup_class_subset_and_memory_move_costs ( void )
static

◆ setup_class_translate()

static void setup_class_translate ( void )
static

◆ setup_class_translate_array()

static void setup_class_translate_array ( enum reg_class * class_translate,
int classes_num,
enum reg_class * classes )
static
Setup translation in CLASS_TRANSLATE of all classes into a class given by array CLASSES of length CLASSES_NUM. The function is used make translation any reg class to an allocno class or to an pressure class. This translation is necessary for some calculations when we can use only allocno or pressure classes and such translation represents an approximate representation of all classes. The translation in case when allocatable hard register set of a given class is subset of allocatable hard register set of a class in CLASSES is pretty simple. We use smallest classes from CLASSES containing a given class. If allocatable hard register set of a given class is not a subset of any corresponding set of a class from CLASSES, we use the cheapest (with load/store point of view) class from CLASSES whose set intersects with given class set.

References alloc_reg_class_subclasses, hard_reg_set_empty_p(), i, INT_MAX, ira_memory_move_cost, no_unit_alloc_regs, reg_class_contents, and temp_hard_regset.

Referenced by setup_class_translate().

◆ setup_hard_regno_aclass()

static void setup_hard_regno_aclass ( void )
static
Set up array ira_hard_regno_allocno_class.

References i, ira_allocno_class_translate, ira_hard_regno_allocno_class, no_unit_alloc_regs, and TEST_HARD_REG_BIT.

Referenced by ira_init().

◆ setup_hard_regno_nrefs()

static void setup_hard_regno_nrefs ( void )
static

◆ setup_preferred_alternate_classes_for_new_pseudos()

static void setup_preferred_alternate_classes_for_new_pseudos ( int start)
static
Setup preferred and alternative classes for new pseudo-registers created by IRA starting with START.

References i, internal_flag_ira_verbose, ira_assert, ira_dump_file, max_reg_num(), max_regno, NULL, ORIGINAL_REGNO, reg_allocno_class(), reg_alternate_class(), reg_class_names, reg_preferred_class(), regno_reg_rtx, and setup_reg_classes().

Referenced by expand_reg_info().

◆ setup_pressure_classes()

static void setup_pressure_classes ( void )
static
Find pressure classes which are register classes for which we calculate register pressure in IRA, register pressure sensitive insn scheduling, and register pressure sensitive loop invariant motion. To make register pressure calculation easy, we always use non-intersected register pressure classes. A move of hard registers from one register pressure class is not more expensive than load and store of the hard registers. Most likely an allocno class will be a subset of a register pressure class and in many cases a register pressure class. That makes usage of register pressure classes a good approximation to find a high register pressure.

References alloc_reg_class_subclasses, CLEAR_HARD_REG_SET, contains_reg_of_mode, hard_reg_set_empty_p(), hard_reg_set_subset_p(), i, ira_assert, ira_class_hard_regs_num, ira_init_register_move_cost_if_necessary(), ira_max_memory_move_cost, ira_pressure_classes, ira_pressure_classes_num, ira_prohibited_class_mode_regs, ira_reg_pressure_class_p, ira_register_move_cost, no_unit_alloc_regs, reg_class_contents, SET_HARD_REG_BIT, setup_stack_reg_pressure_class(), targetm, and temp_hard_regset.

Referenced by setup_allocno_and_important_classes().

◆ setup_prohibited_and_exclude_class_mode_regs()

static void setup_prohibited_and_exclude_class_mode_regs ( void )
static
Set up IRA_PROHIBITED_CLASS_MODE_REGS, IRA_EXCLUDE_CLASS_MODE_REGS, and IRA_CLASS_SINGLETON. This function is called once IRA_CLASS_HARD_REGS has been initialized.

References CLEAR_HARD_REG_SET, count, in_hard_reg_set_p(), ira_class_hard_regs, ira_class_hard_regs_num, ira_class_singleton, ira_exclude_class_mode_regs, ira_prohibited_class_mode_regs, no_unit_alloc_regs, reg_class_contents, SET_HARD_REG_BIT, targetm, and temp_hard_regset.

Referenced by ira_init().

◆ setup_prohibited_mode_move_regs()

◆ setup_reg_class_nregs()

static void setup_reg_class_nregs ( void )
static
Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.

References alloc_reg_class_subclasses, i, ira_reg_class_max_nregs, ira_reg_class_min_nregs, and targetm.

Referenced by ira_init().

◆ setup_reg_class_relations()

static void setup_reg_class_relations ( void )
static
Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION, IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations, please see corresponding comments in ira-int.h.

References hard_reg_set_empty_p(), hard_reg_set_intersect_p(), hard_reg_set_subset_p(), i, ira_important_classes, ira_important_classes_num, ira_reg_class_intersect, ira_reg_class_subset, ira_reg_class_subunion, ira_reg_class_super_classes, ira_reg_class_superunion, ira_reg_classes_intersect_p, no_unit_alloc_regs, reg_class_contents, reg_class_subclasses, reg_class_subset_p(), reg_class_subunion, reg_class_superunion, and temp_hard_regset.

Referenced by find_reg_classes().

◆ setup_reg_equiv()

static void setup_reg_equiv ( void )
static

◆ setup_reg_equiv_init()

static void setup_reg_equiv_init ( void )
static
Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should be already calculated.

References i, ira_reg_equiv, max_reg_num(), max_regno, and reg_equiv_init.

Referenced by ira().

◆ setup_reg_mode_hard_regset()

static void setup_reg_mode_hard_regset ( void )
static
The function sets up the map IRA_REG_MODE_HARD_REGSET.

References CLEAR_HARD_REG_SET, hard_regno_nregs(), i, ira_reg_mode_hard_regset, and SET_HARD_REG_BIT.

Referenced by ira_init().

◆ setup_reg_renumber()

◆ setup_reg_subclasses()

static void setup_reg_subclasses ( void )
static

◆ setup_stack_reg_pressure_class()

static void setup_stack_reg_pressure_class ( void )
static
Set up ira_stack_reg_pressure_class which is the biggest pressure register class containing stack registers or NO_REGS if there are no stack registers. To find this class, we iterate through all register pressure classes and choose the first register pressure class containing all the stack registers and having the biggest size.

References CLEAR_HARD_REG_SET, hard_reg_set_size(), i, ira_pressure_classes, ira_pressure_classes_num, ira_stack_reg_pressure_class, reg_class_contents, SET_HARD_REG_BIT, and temp_hard_regset.

Referenced by setup_pressure_classes().

◆ setup_uniform_class_p()

static void setup_uniform_class_p ( void )
static
Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class whose register move cost between any registers of the class is the same as for all its subclasses. We use the data to speed up the 2nd pass of calculations of allocno costs.

References contains_reg_of_mode, i, ira_class_hard_regs_num, ira_init_register_move_cost_if_necessary(), ira_register_move_cost, ira_uniform_class_p, and reg_class_subclasses.

Referenced by setup_allocno_and_important_classes().

◆ split_live_ranges_for_shrink_wrap()

◆ too_high_register_pressure_p()

static bool too_high_register_pressure_p ( void )
static
Return TRUE if there is too high register pressure in the function. It is used to decide when stack slot sharing is worth to do.

References i, ira_loop_tree_root, ira_pressure_classes, and ira_pressure_classes_num.

Referenced by ira().

◆ update_equiv_regs()

static void update_equiv_regs ( void )
static
Find registers that are equivalent to a single value throughout the compilation (either because they can be referenced in memory or are set once from a single constant). Lower their priority for a register. If such a register is only referenced once, try substituting its value into the using insn. If it succeeds, we can eliminate the register completely. Initialize init_insns in ira_reg_equiv array.

References BB_END, BB_HEAD, bb_loop_depth(), bitmap_bit_p, cfun, copy_rtx(), def_dominates_uses(), DF_REG_DEF_COUNT, equiv_init_movable_p(), equiv_init_varies_p(), find_reg_note(), FOR_EACH_BB_FN, gcc_assert, gen_rtx_INSN_LIST(), GET_CODE, i, df_insn_info::insn, rtx_insn_list::insn(), INSN_P, ira_reg_equiv, ira_use_lra_p, loop_depth(), may_trap_or_fault_p(), MEM_P, rtx_insn_list::next(), NEXT_INSN(), no_equiv(), NONJUMP_INSN_P, note_pattern_stores(), NULL, NULL_RTX, NUM_FIXED_BLOCKS, PATTERN(), REG_BASIC_BLOCK, reg_equiv, REG_N_REFS(), REG_NOTE_KIND, REG_NOTES, REG_P, reg_preferred_class(), REGNO, regstat_get_setjmp_crosses(), remove_note(), rtx_equal_p(), rtx_varies_p(), SET_DEST, SET_SRC, set_unique_reg_note(), setjmp_crosses, side_effects_p(), single_set(), targetm, valid_none, valid_reload, validate_equiv_mem(), XEXP, XVECEXP, and XVECLEN.

Referenced by ira().

◆ update_equiv_regs_prescan()

static void update_equiv_regs_prescan ( void )
static
Scan the instructions before update_equiv_regs. Record which registers are referenced as paradoxical subregs. Also check for cases in which the current function needs to save a register that one of its call instructions clobbers. These things are logically unrelated, but it's more efficient to do them together.

References CALL_P, function_abi_aggregator::caller_save_regs(), cfun, crtl, df_set_regs_ever_live(), FOR_BB_INSNS, FOR_EACH_BB_FN, hard_reg_set_empty_p(), df_insn_info::insn, insn_callee_abi(), NONDEBUG_INSN_P, function_abi_aggregator::note_callee_abi(), set_paradoxical_subreg(), and TEST_HARD_REG_BIT.

Referenced by ira().

◆ validate_equiv_mem()

static enum valid_equiv validate_equiv_mem ( rtx_insn * start,
rtx reg,
rtx memref )
static
Verify that no store between START and the death of REG invalidates MEMREF. MEMREF is invalidated by modifying a register used in MEMREF, by storing into an overlapping memory location, or with a non-const CALL_INSN. Return VALID_RELOAD if MEMREF remains valid for both reload and combine_and_move insns, VALID_COMBINE if only valid for combine_and_move_insns, and VALID_NONE otherwise.

References CALL_P, equiv_init_varies_p(), equiv_mem_data::equiv_mem_modified, find_reg_note(), INSN_P, MEM_READONLY_P, NEXT_INSN(), note_stores(), REG_NOTE_KIND, REG_NOTES, reg_overlap_mentioned_p(), REG_P, RTL_CONST_OR_PURE_CALL_P, side_effects_p(), valid_combine, valid_none, valid_reload, validate_equiv_mem_from_store(), and XEXP.

Referenced by add_store_equivs(), and update_equiv_regs().

◆ validate_equiv_mem_from_store()

static void validate_equiv_mem_from_store ( rtx dest,
const_rtx set,
void * data )
static
If EQUIV_MEM is modified by modifying DEST, indicate that it is modified. Called via note_stores.

References anti_dependence(), equiv_mem_data::equiv_mem, equiv_mem_data::equiv_mem_modified, MEM_P, reg_overlap_mentioned_p(), and REG_P.

Referenced by validate_equiv_mem().

Variable Documentation

◆ allocated_reg_info_size

int allocated_reg_info_size
static
The number of entries allocated in reg_info.

Referenced by expand_reg_info(), and ira().

◆ allocno_class_order

int allocno_class_order[N_REG_CLASSES]
static
Order numbers of allocno classes in original target allocno class array, -1 for non-allocno classes.

Referenced by comp_reg_classes_func(), and reorder_important_classes().

◆ default_target_ira

struct target_ira default_target_ira
Integrated Register Allocator (IRA) entry point. Copyright (C) 2006-2025 Free Software Foundation, Inc. Contributed by Vladimir Makarov <vmakarov@redhat.com>. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>.
The integrated register allocator (IRA) is a regional register allocator performing graph coloring on a top-down traversal of nested regions. Graph coloring in a region is based on Chaitin-Briggs algorithm. It is called integrated because register coalescing, register live range splitting, and choosing a better hard register are done on-the-fly during coloring. Register coalescing and choosing a cheaper hard register is done by hard register preferencing during hard register assigning. The live range splitting is a byproduct of the regional register allocation. Major IRA notions are: o *Region* is a part of CFG where graph coloring based on Chaitin-Briggs algorithm is done. IRA can work on any set of nested CFG regions forming a tree. Currently the regions are the entire function for the root region and natural loops for the other regions. Therefore data structure representing a region is called loop_tree_node. o *Allocno class* is a register class used for allocation of given allocno. It means that only hard register of given register class can be assigned to given allocno. In reality, even smaller subset of (*profitable*) hard registers can be assigned. In rare cases, the subset can be even smaller because our modification of Chaitin-Briggs algorithm requires that sets of hard registers can be assigned to allocnos forms a forest, i.e. the sets can be ordered in a way where any previous set is not intersected with given set or is a superset of given set. o *Pressure class* is a register class belonging to a set of register classes containing all of the hard-registers available for register allocation. The set of all pressure classes for a target is defined in the corresponding machine-description file according some criteria. Register pressure is calculated only for pressure classes and it affects some IRA decisions as forming allocation regions. o *Allocno* represents the live range of a pseudo-register in a region. Besides the obvious attributes like the corresponding pseudo-register number, allocno class, conflicting allocnos and conflicting hard-registers, there are a few allocno attributes which are important for understanding the allocation algorithm: - *Live ranges*. This is a list of ranges of *program points* where the allocno lives. Program points represent places where a pseudo can be born or become dead (there are approximately two times more program points than the insns) and they are represented by integers starting with 0. The live ranges are used to find conflicts between allocnos. They also play very important role for the transformation of the IRA internal representation of several regions into a one region representation. The later is used during the reload pass work because each allocno represents all of the corresponding pseudo-registers. - *Hard-register costs*. This is a vector of size equal to the number of available hard-registers of the allocno class. The cost of a callee-clobbered hard-register for an allocno is increased by the cost of save/restore code around the calls through the given allocno's life. If the allocno is a move instruction operand and another operand is a hard-register of the allocno class, the cost of the hard-register is decreased by the move cost. When an allocno is assigned, the hard-register with minimal full cost is used. Initially, a hard-register's full cost is the corresponding value from the hard-register's cost vector. If the allocno is connected by a *copy* (see below) to another allocno which has just received a hard-register, the cost of the hard-register is decreased. Before choosing a hard-register for an allocno, the allocno's current costs of the hard-registers are modified by the conflict hard-register costs of all of the conflicting allocnos which are not assigned yet. - *Conflict hard-register costs*. This is a vector of the same size as the hard-register costs vector. To permit an unassigned allocno to get a better hard-register, IRA uses this vector to calculate the final full cost of the available hard-registers. Conflict hard-register costs of an unassigned allocno are also changed with a change of the hard-register cost of the allocno when a copy involving the allocno is processed as described above. This is done to show other unassigned allocnos that a given allocno prefers some hard-registers in order to remove the move instruction corresponding to the copy. o *Cap*. If a pseudo-register does not live in a region but lives in a nested region, IRA creates a special allocno called a cap in the outer region. A region cap is also created for a subregion cap. o *Copy*. Allocnos can be connected by copies. Copies are used to modify hard-register costs for allocnos during coloring. Such modifications reflects a preference to use the same hard-register for the allocnos connected by copies. Usually copies are created for move insns (in this case it results in register coalescing). But IRA also creates copies for operands of an insn which should be assigned to the same hard-register due to constraints in the machine description (it usually results in removing a move generated in reload to satisfy the constraints) and copies referring to the allocno which is the output operand of an instruction and the allocno which is an input operand dying in the instruction (creation of such copies results in less register shuffling). IRA *does not* create copies between the same register allocnos from different regions because we use another technique for propagating hard-register preference on the borders of regions. Allocnos (including caps) for the upper region in the region tree *accumulate* information important for coloring from allocnos with the same pseudo-register from nested regions. This includes hard-register and memory costs, conflicts with hard-registers, allocno conflicts, allocno copies and more. *Thus, attributes for allocnos in a region have the same values as if the region had no subregions*. It means that attributes for allocnos in the outermost region corresponding to the function have the same values as though the allocation used only one region which is the entire function. It also means that we can look at IRA work as if the first IRA did allocation for all function then it improved the allocation for loops then their subloops and so on. IRA major passes are: o Building IRA internal representation which consists of the following subpasses: * First, IRA builds regions and creates allocnos (file ira-build.cc) and initializes most of their attributes. * Then IRA finds an allocno class for each allocno and calculates its initial (non-accumulated) cost of memory and each hard-register of its allocno class (file ira-cost.c). * IRA creates live ranges of each allocno, calculates register pressure for each pressure class in each region, sets up conflict hard registers for each allocno and info about calls the allocno lives through (file ira-lives.cc). * IRA removes low register pressure loops from the regions mostly to speed IRA up (file ira-build.cc). * IRA propagates accumulated allocno info from lower region allocnos to corresponding upper region allocnos (file ira-build.cc). * IRA creates all caps (file ira-build.cc). * Having live-ranges of allocnos and their classes, IRA creates conflicting allocnos for each allocno. Conflicting allocnos are stored as a bit vector or array of pointers to the conflicting allocnos whatever is more profitable (file ira-conflicts.cc). At this point IRA creates allocno copies. o Coloring. Now IRA has all necessary info to start graph coloring process. It is done in each region on top-down traverse of the region tree (file ira-color.cc). There are following subpasses: * Finding profitable hard registers of corresponding allocno class for each allocno. For example, only callee-saved hard registers are frequently profitable for allocnos living through colors. If the profitable hard register set of allocno does not form a tree based on subset relation, we use some approximation to form the tree. This approximation is used to figure out trivial colorability of allocnos. The approximation is a pretty rare case. * Putting allocnos onto the coloring stack. IRA uses Briggs optimistic coloring which is a major improvement over Chaitin's coloring. Therefore IRA does not spill allocnos at this point. There is some freedom in the order of putting allocnos on the stack which can affect the final result of the allocation. IRA uses some heuristics to improve the order. The major one is to form *threads* from colorable allocnos and push them on the stack by threads. Thread is a set of non-conflicting colorable allocnos connected by copies. The thread contains allocnos from the colorable bucket or colorable allocnos already pushed onto the coloring stack. Pushing thread allocnos one after another onto the stack increases chances of removing copies when the allocnos get the same hard reg. We also use a modification of Chaitin-Briggs algorithm which works for intersected register classes of allocnos. To figure out trivial colorability of allocnos, the mentioned above tree of hard register sets is used. To get an idea how the algorithm works in i386 example, let us consider an allocno to which any general hard register can be assigned. If the allocno conflicts with eight allocnos to which only EAX register can be assigned, given allocno is still trivially colorable because all conflicting allocnos might be assigned only to EAX and all other general hard registers are still free. To get an idea of the used trivial colorability criterion, it is also useful to read article "Graph-Coloring Register Allocation for Irregular Architectures" by Michael D. Smith and Glen Holloway. Major difference between the article approach and approach used in IRA is that Smith's approach takes register classes only from machine description and IRA calculate register classes from intermediate code too (e.g. an explicit usage of hard registers in RTL code for parameter passing can result in creation of additional register classes which contain or exclude the hard registers). That makes IRA approach useful for improving coloring even for architectures with regular register files and in fact some benchmarking shows the improvement for regular class architectures is even bigger than for irregular ones. Another difference is that Smith's approach chooses intersection of classes of all insn operands in which a given pseudo occurs. IRA can use bigger classes if it is still more profitable than memory usage. * Popping the allocnos from the stack and assigning them hard registers. If IRA cannot assign a hard register to an allocno and the allocno is coalesced, IRA undoes the coalescing and puts the uncoalesced allocnos onto the stack in the hope that some such allocnos will get a hard register separately. If IRA fails to assign hard register or memory is more profitable for it, IRA spills the allocno. IRA assigns the allocno the hard-register with minimal full allocation cost which reflects the cost of usage of the hard-register for the allocno and cost of usage of the hard-register for allocnos conflicting with given allocno. * Chaitin-Briggs coloring assigns as many pseudos as possible to hard registers. After coloring we try to improve allocation with cost point of view. We improve the allocation by spilling some allocnos and assigning the freed hard registers to other allocnos if it decreases the overall allocation cost. * After allocno assigning in the region, IRA modifies the hard register and memory costs for the corresponding allocnos in the subregions to reflect the cost of possible loads, stores, or moves on the border of the region and its subregions. When default regional allocation algorithm is used (-fira-algorithm=mixed), IRA just propagates the assignment for allocnos if the register pressure in the region for the corresponding pressure class is less than number of available hard registers for given pressure class. o Spill/restore code moving. When IRA performs an allocation by traversing regions in top-down order, it does not know what happens below in the region tree. Therefore, sometimes IRA misses opportunities to perform a better allocation. A simple optimization tries to improve allocation in a region having subregions and containing in another region. If the corresponding allocnos in the subregion are spilled, it spills the region allocno if it is profitable. The optimization implements a simple iterative algorithm performing profitable transformations while they are still possible. It is fast in practice, so there is no real need for a better time complexity algorithm. o Code change. After coloring, two allocnos representing the same pseudo-register outside and inside a region respectively may be assigned to different locations (hard-registers or memory). In this case IRA creates and uses a new pseudo-register inside the region and adds code to move allocno values on the region's borders. This is done during top-down traversal of the regions (file ira-emit.cc). In some complicated cases IRA can create a new allocno to move allocno values (e.g. when a swap of values stored in two hard-registers is needed). At this stage, the new allocno is marked as spilled. IRA still creates the pseudo-register and the moves on the region borders even when both allocnos were assigned to the same hard-register. If the reload pass spills a pseudo-register for some reason, the effect will be smaller because another allocno will still be in the hard-register. In most cases, this is better then spilling both allocnos. If reload does not change the allocation for the two pseudo-registers, the trivial move will be removed by post-reload optimizations. IRA does not generate moves for allocnos assigned to the same hard register when the default regional allocation algorithm is used and the register pressure in the region for the corresponding pressure class is less than number of available hard registers for given pressure class. IRA also does some optimizations to remove redundant stores and to reduce code duplication on the region borders. o Flattening internal representation. After changing code, IRA transforms its internal representation for several regions into one region representation (file ira-build.cc). This process is called IR flattening. Such process is more complicated than IR rebuilding would be, but is much faster. o After IR flattening, IRA tries to assign hard registers to all spilled allocnos. This is implemented by a simple and fast priority coloring algorithm (see function ira_reassign_conflict_allocnos::ira-color.cc). Here new allocnos created during the code change pass can be assigned to hard registers. o At the end IRA calls the reload pass. The reload pass communicates with IRA through several functions in file ira-color.cc to improve its decisions in * sharing stack slots for the spilled pseudos based on IRA info about pseudo-register conflicts. * reassigning hard-registers to all spilled pseudos at the end of each reload iteration. * choosing a better hard-register to spill based on IRA info about pseudo-register live ranges and the register pressure in places where the pseudo-register lives. IRA uses a lot of data representing the target processors. These data are initialized in file ira.cc. If function has no loops (or the loops are ignored when -fira-algorithm=CB is used), we have classic Chaitin-Briggs coloring (only instead of separate pass of coalescing, we use hard register preferencing). In such case, IRA works much faster because many things are not made (like IR flattening, the spill/restore optimization, and the code change). Literature is worth to read for better understanding the code: o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to Graph Coloring Register Allocation. o David Callahan, Brian Koblenz. Register allocation via hierarchical graph coloring. o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph Coloring Register Allocation: A Study of the Chaitin-Briggs and Callahan-Koblenz Algorithms. o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global Register Allocation Based on Graph Fusion. o Michael D. Smith and Glenn Holloway. Graph-Coloring Register Allocation for Irregular Architectures o Vladimir Makarov. The Integrated Register Allocator for GCC. o Vladimir Makarov. The top-down register allocator for irregular register file architectures.

◆ default_target_ira_int

class target_ira_int default_target_ira_int

◆ eliminable_regset

◆ first_moveable_pseudo

int first_moveable_pseudo
Record the range of register numbers added by find_moveable_pseudos.

Referenced by find_costs_and_classes(), find_moveable_pseudos(), and move_unallocated_pseudos().

◆ internal_flag_ira_verbose

int internal_flag_ira_verbose
A modified value of flag `-fira-verbose' used internally.

Referenced by add_range_and_copies_from_move_list(), allocno_reload_assign(), assign_hard_reg(), build_conflict_bit_table(), calculate_allocation_cost(), change_loop(), coalesce_allocnos(), coalesce_spill_slots(), color_allocnos(), color_pass(), copy_allocno_live_ranges(), create_cap_allocno(), do_coloring(), do_reload(), fast_allocation(), find_costs_and_classes(), form_threads_from_colorable_allocno(), form_threads_from_copies(), generate_edge_moves(), improve_allocation(), ira(), ira_build(), ira_build_conflicts(), ira_compress_allocno_live_ranges(), ira_create_allocno_live_ranges(), ira_create_new_reg(), ira_flattening(), ira_mark_new_stack_slot(), ira_reassign_conflict_allocnos(), ira_reassign_pseudos(), ira_rebuild_regno_allocno_list(), ira_remove_pref(), ira_reuse_stack_slot(), ira_set_pseudo_classes(), ira_sort_regnos_for_alter_reg(), ira_update_equiv_info_by_shuffle_insn(), mark_all_loops_for_removal(), mark_loops_for_removal(), modify_move_list(), move_allocno_live_ranges(), move_spill_restore(), pop_allocnos_from_stack(), process_bb_node_lives(), push_allocno_to_stack(), push_only_colorable(), record_reg_classes(), remove_allocno_from_bucket_and_push(), remove_some_program_points_and_update_live_ranges(), restore_costs_from_copies(), scan_one_insn(), setup_allocno_available_regs_num(), setup_preferred_alternate_classes_for_new_pseudos(), update_costs_from_allocno(), update_costs_from_copies(), and update_costs_from_prefs().

◆ ira_additional_jumps_num

int ira_additional_jumps_num

◆ ira_bitmap_obstack

struct bitmap_obstack ira_bitmap_obstack
static
Obstack used for storing all bitmaps of the IRA.

Referenced by do_reload(), ira(), and ira_allocate_bitmap().

◆ ira_conflicts_p

◆ ira_dump_file

FILE* ira_dump_file
Dump file of the allocator if it is not NULL.

Referenced by add_range_and_copies_from_move_list(), allocno_reload_assign(), assign_hard_reg(), build_conflict_bit_table(), calculate_allocation_cost(), change_loop(), coalesce_allocnos(), coalesce_spill_slots(), color_allocnos(), color_pass(), copy_allocno_live_ranges(), create_cap_allocno(), decrease_live_ranges_number(), do_coloring(), do_reload(), fast_allocation(), find_costs_and_classes(), form_threads_from_colorable_allocno(), form_threads_from_copies(), generate_edge_moves(), improve_allocation(), ira(), ira_build(), ira_build_conflicts(), ira_compress_allocno_live_ranges(), ira_create_allocno_live_ranges(), ira_create_new_reg(), ira_flattening(), ira_mark_new_stack_slot(), ira_print_expanded_allocno(), ira_reassign_conflict_allocnos(), ira_reassign_pseudos(), ira_rebuild_regno_allocno_list(), ira_remove_insn_scratches(), ira_remove_pref(), ira_reuse_stack_slot(), ira_set_pseudo_classes(), ira_sort_regnos_for_alter_reg(), ira_update_equiv_info_by_shuffle_insn(), mark_all_loops_for_removal(), mark_loops_for_removal(), modify_move_list(), move_allocno_live_ranges(), move_spill_restore(), pop_allocnos_from_stack(), print_allocno_costs(), print_loop_title(), print_pseudo_costs(), process_bb_node_lives(), push_allocno_to_stack(), push_only_colorable(), record_reg_classes(), remove_allocno_from_bucket_and_push(), remove_scratches(), remove_some_program_points_and_update_live_ranges(), restore_costs_from_copies(), scan_one_insn(), setup_allocno_available_regs_num(), setup_preferred_alternate_classes_for_new_pseudos(), update_costs_from_allocno(), update_costs_from_copies(), and update_costs_from_prefs().

◆ ira_in_progress

bool ira_in_progress = false
Set to true while in IRA.

◆ ira_load_cost

int64_t ira_load_cost

◆ ira_mem_cost

int64_t ira_mem_cost

◆ ira_move_loops_num

int ira_move_loops_num

◆ ira_overall_cost

int64_t ira_overall_cost
Correspondingly overall cost of the allocation, overall cost before reload, cost of the allocnos assigned to hard-registers, cost of the allocnos assigned to memory, cost of loads, stores and register move insns generated for pseudo-register live range splitting (see ira-emit.cc).

Referenced by allocno_reload_assign(), calculate_allocation_cost(), do_reload(), emit_move_list(), ira(), and ira_mark_allocation_change().

◆ ira_reg_cost

int64_t ira_reg_cost

Referenced by calculate_allocation_cost(), and ira().

◆ ira_reg_equiv

◆ ira_reg_equiv_len

◆ ira_shuffle_cost

int64_t ira_shuffle_cost

◆ ira_spilled_reg_stack_slots

class ira_spilled_reg_stack_slot* ira_spilled_reg_stack_slots
The following array contains info about spilled pseudo-registers stack slots used in current function so far.

Referenced by do_reload(), ira(), ira_mark_new_stack_slot(), and ira_reuse_stack_slot().

◆ ira_spilled_reg_stack_slots_num

int ira_spilled_reg_stack_slots_num
The number of elements in the following array.

Referenced by ira(), ira_mark_new_stack_slot(), ira_reuse_stack_slot(), and ira_sort_regnos_for_alter_reg().

◆ ira_store_cost

int64_t ira_store_cost

◆ ira_use_lra_p

◆ last_moveable_pseudo

int last_moveable_pseudo

◆ max_regno_before_ira

int max_regno_before_ira
static
Value of max_reg_num () before IRA work start. This value helps us to recognize a situation when new pseudos were created during IRA work.

Referenced by fix_reg_equiv_init(), and ira().

◆ overall_cost_before

int64_t overall_cost_before

Referenced by do_reload(), and ira().

◆ pseudo_replaced_reg

vec<rtx> pseudo_replaced_reg
static
These two vectors hold data for every register added by find_movable_pseudos, with index 0 holding data for the first_moveable_pseudo.
The original home register.

Referenced by find_moveable_pseudos(), and move_unallocated_pseudos().

◆ reg_equiv

struct equivalence* reg_equiv
static
reg_equiv[N] (where N is a pseudo reg number) is the equivalence structure for that register.

Referenced by add_store_equivs(), adjust_cleared_regs(), combine_and_move_insns(), equiv_init_movable_p(), equiv_init_varies_p(), ira(), memref_referenced_p(), no_equiv(), set_paradoxical_subreg(), and update_equiv_regs().

◆ reg_renumber

short* reg_renumber
Vector of substitutions of register numbers, used to map pseudo regs into hardware regs. This is set up as a result of register allocation. Element N is the hard reg assigned to pseudo reg N, or is -1 if no hard reg was assigned. If N is a hard reg number, element N is N.

Referenced by add_used_regs(), allocate_initial_values(), allocate_reg_info(), allocno_reload_assign(), alter_reg(), assign_by_spills(), assign_mem_slot(), build_insn_chain(), calculate_elim_costs_all_insns(), calculate_needs_all_insns(), calculate_spill_cost(), check_and_process_move(), compute_use_by_pseudos(), constrain_operands(), count_pseudo(), count_spilled_pseudo(), create_cands(), create_live_range_start_chains(), cselib_invalidate_regno(), curr_insn_transform(), delete_output_reload(), do_remat(), eliminate_regs_1(), elimination_effects(), emit_input_reload_insns(), find_reloads(), find_reloads_address_1(), find_reloads_toplev(), finish_spills(), free_reg_info(), get_hard_regs(), improve_inheritance(), inherit_in_ebb(), init_regno_assign_info(), ira_mark_allocation_change(), ira_reassign_pseudos(), ira_restore_scratches(), lra_assign(), lra_create_live_ranges_1(), lra_fp_pseudo_p(), lra_get_regno_hard_regno(), lra_setup_reg_renumber(), lra_split_hard_reg_for(), lra_undo_inheritance(), mark_home_live(), mark_home_live_1(), mark_referenced_regs(), mem_move_p(), move_unallocated_pseudos(), need_for_call_save_p(), need_for_split_p(), operand_to_remat(), prepare_function_start(), process_bb_lives(), pseudo_for_reload_consideration_p(), push_reload(), reg_overlap_for_remat_p(), regno_ok_for_base_p(), reload(), remove_init_insns(), resize_reg_info(), rtx_renumbered_equal_p(), save_call_clobbered_regs(), setup_live_pseudos_and_spill_after_risky_transforms(), setup_next_usage_insn(), setup_reg_renumber(), setup_save_areas(), spill_for(), spill_hard_reg(), spill_pseudos(), split_reg(), subst_indexed_address(), true_regnum(), undo_optional_reloads(), update_hard_regno_preference(), update_lives(), and will_delete_init_insn_p().

◆ saved_flag_ira_share_spill_slots

int saved_flag_ira_share_spill_slots
static
Saved between IRA and reload.

Referenced by do_reload(), and ira().

◆ scratch_bitmap

bitmap_head scratch_bitmap
static

◆ scratch_operand_bitmap

bitmap_head scratch_operand_bitmap
static

◆ scratches

vec<sloc_t> scratches
static
Locations of the former scratches.

Referenced by ira_register_new_scratch_op(), ira_restore_scratches(), and remove_scratches().

◆ temp_hard_regset