GCC Middle and Back End API Reference
optabs.cc File Reference
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "predict.h"
#include "tm_p.h"
#include "optabs.h"
#include "expmed.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "rtx-vector-builder.h"
#include "stor-layout.h"
#include "except.h"
#include "dojump.h"
#include "explow.h"
#include "expr.h"
#include "optabs-tree.h"
#include "libfuncs.h"
#include "internal-fn.h"
#include "langhooks.h"
#include "gimple.h"
#include "ssa.h"
Include dependency graph for optabs.cc:

Data Structures

struct  no_conflict_data
 
struct  atomic_op_functions
 

Functions

static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *, machine_mode *)
 
static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int)
 
static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool)
 
static rtx emit_conditional_move_1 (rtx, rtx, rtx, rtx, machine_mode)
 
void debug_optab_libfuncs (void)
 
static bool add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0, rtx op1, machine_mode op0_mode)
 
static machine_mode widened_mode (machine_mode to_mode, rtx op0, rtx op1)
 
static rtx widen_operand (rtx op, machine_mode mode, machine_mode oldmode, int unsignedp, bool no_extend)
 
rtx expand_widen_pattern_expr (const_sepops ops, rtx op0, rtx op1, rtx wide_op, rtx target, int unsignedp)
 
rtx expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0, rtx op1, rtx op2, rtx target, int unsignedp)
 
rtx simplify_expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods)
 
bool force_expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods)
 
rtx expand_vector_broadcast (machine_mode vmode, rtx op)
 
static bool expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods)
 
static bool expand_subword_shift (scalar_int_mode op1_mode, optab binoptab, rtx outof_input, rtx into_input, rtx op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods, unsigned HOST_WIDE_INT shift_mask)
 
static bool expand_doubleword_shift_condmove (scalar_int_mode op1_mode, optab binoptab, enum rtx_code cmp_code, rtx cmp1, rtx cmp2, rtx outof_input, rtx into_input, rtx subword_op1, rtx superword_op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods, unsigned HOST_WIDE_INT shift_mask)
 
static bool expand_doubleword_shift (scalar_int_mode op1_mode, optab binoptab, rtx outof_input, rtx into_input, rtx op1, rtx outof_target, rtx into_target, int unsignedp, enum optab_methods methods, unsigned HOST_WIDE_INT shift_mask)
 
static rtx expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target, bool umulp, enum optab_methods methods)
 
static rtx expand_doubleword_mod (machine_mode mode, rtx op0, rtx op1, bool unsignedp)
 
rtx expand_doubleword_divmod (machine_mode mode, rtx op0, rtx op1, rtx *rem, bool unsignedp)
 
rtx expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods)
 
static bool swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
 
static bool shift_optab_p (optab binoptab)
 
static bool commutative_optab_p (optab binoptab)
 
static rtx avoid_expensive_constant (machine_mode mode, optab binoptab, int opn, rtx x, bool unsignedp)
 
static rtx expand_binop_directly (enum insn_code icode, machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods, rtx_insn *last)
 
rtx expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods)
 
rtx sign_expand_binop (machine_mode mode, optab uoptab, optab soptab, rtx op0, rtx op1, rtx target, int unsignedp, enum optab_methods methods)
 
bool expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1, int unsignedp)
 
bool expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, int unsignedp)
 
bool expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1, enum rtx_code code)
 
rtx expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0, rtx target, int unsignedp)
 
static rtx widen_leading (scalar_int_mode mode, rtx op0, rtx target, optab unoptab)
 
static rtx expand_clrsb_using_clz (scalar_int_mode mode, rtx op0, rtx target)
 
static rtx expand_ffs (scalar_int_mode, rtx, rtx)
 
static rtx expand_doubleword_clz_ctz_ffs (scalar_int_mode mode, rtx op0, rtx target, optab unoptab)
 
static rtx expand_doubleword_popcount (scalar_int_mode mode, rtx op0, rtx target)
 
static rtx expand_doubleword_parity (scalar_int_mode mode, rtx op0, rtx target)
 
static rtx widen_bswap (scalar_int_mode mode, rtx op0, rtx target)
 
static rtx expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
 
static rtx expand_parity (scalar_int_mode mode, rtx op0, rtx target)
 
static rtx expand_ctz (scalar_int_mode mode, rtx op0, rtx target)
 
static rtx expand_absneg_bit (enum rtx_code code, scalar_float_mode mode, rtx op0, rtx target)
 
rtx expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target, int unsignedp)
 
rtx expand_abs_nojump (machine_mode mode, rtx op0, rtx target, int result_unsignedp)
 
rtx expand_abs (machine_mode mode, rtx op0, rtx target, int result_unsignedp, int safe)
 
rtx expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
 
static rtx expand_copysign_absneg (scalar_float_mode mode, rtx op0, rtx op1, rtx target, int bitpos, bool op0_is_abs)
 
static rtx expand_copysign_bit (scalar_float_mode mode, rtx op0, rtx op1, rtx target, int bitpos, bool op0_is_abs)
 
rtx expand_copysign (rtx op0, rtx op1, rtx target)
 
bool maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
 
void emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
 
static void no_conflict_move_test (rtx dest, const_rtx set, void *p0)
 
void emit_libcall_block (rtx_insn *insns, rtx target, rtx result, rtx equiv)
 
bool can_compare_p (enum rtx_code code, machine_mode mode, enum can_compare_purpose purpose)
 
static bool unsigned_optab_p (enum rtx_code code)
 
static bool insn_predicate_matches_p (enum insn_code icode, unsigned int opno, enum rtx_code code, machine_mode mask_mode, machine_mode value_mode)
 
bool can_vec_cmp_compare_p (enum rtx_code code, machine_mode value_mode, machine_mode mask_mode)
 
bool can_vcond_compare_p (enum rtx_code code, machine_mode value_mode, machine_mode cmp_op_mode)
 
bool can_vec_set_var_idx_p (machine_mode vec_mode)
 
bool can_vec_extract_var_idx_p (machine_mode vec_mode, machine_mode extr_mode)
 
static void prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size, int unsignedp, enum optab_methods methods, rtx *ptest, machine_mode *pmode)
 
rtx prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode, machine_mode wider_mode, int unsignedp)
 
static void emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label, direct_optab cmp_optab, profile_probability prob, bool test_branch)
 
static enum insn_code validate_test_and_branch (tree val, rtx *ptest, machine_mode *pmode, optab *res)
 
void emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size, machine_mode mode, int unsignedp, tree val, rtx label, profile_probability prob)
 
void emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size, machine_mode mode, int unsignedp, rtx label, profile_probability prob)
 
void emit_indirect_jump (rtx loc)
 
rtx emit_conditional_move (rtx target, struct rtx_comparison comp, rtx op2, rtx op3, machine_mode mode, int unsignedp)
 
rtx emit_conditional_move (rtx target, rtx comparison, rtx rev_comparison, rtx op2, rtx op3, machine_mode mode)
 
rtx emit_conditional_neg_or_complement (rtx target, rtx_code code, machine_mode mode, rtx cond, rtx op1, rtx op2)
 
rtx emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1, machine_mode cmode, rtx op2, rtx op3, machine_mode mode, int unsignedp)
 
rtx_insngen_add2_insn (rtx x, rtx y)
 
rtx_insngen_add3_insn (rtx r0, rtx r1, rtx c)
 
bool have_add2_insn (rtx x, rtx y)
 
rtx_insngen_addptr3_insn (rtx x, rtx y, rtx z)
 
bool have_addptr3_insn (rtx x, rtx y, rtx z)
 
rtx_insngen_sub2_insn (rtx x, rtx y)
 
rtx_insngen_sub3_insn (rtx r0, rtx r1, rtx c)
 
bool have_sub2_insn (rtx x, rtx y)
 
rtx_insngen_extend_insn (rtx x, rtx y, machine_mode mto, machine_mode mfrom, int unsignedp)
 
void expand_float (rtx to, rtx from, int unsignedp)
 
void expand_fix (rtx to, rtx from, int unsignedp)
 
static rtx prepare_libcall_arg (rtx arg, int uintp)
 
void expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
 
bool expand_sfix_optab (rtx to, rtx from, convert_optab tab)
 
bool have_insn_for (enum rtx_code code, machine_mode mode)
 
rtx_insngen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
 
enum rtx_code get_rtx_code_1 (enum tree_code tcode, bool unsignedp)
 
enum rtx_code get_rtx_code (enum tree_code tcode, bool unsignedp)
 
rtx vector_compare_rtx (machine_mode cmp_mode, enum tree_code tcode, tree t_op0, tree t_op1, bool unsignedp, enum insn_code icode, unsigned int opno)
 
static rtx shift_amt_for_vec_perm_mask (machine_mode mode, const vec_perm_indices &sel, optab shift_optab)
 
static rtx expand_vec_perm_1 (enum insn_code icode, rtx target, rtx v0, rtx v1, rtx sel)
 
rtx expand_vec_perm_const (machine_mode mode, rtx v0, rtx v1, const vec_perm_builder &sel, machine_mode sel_mode, rtx target)
 
rtx expand_vec_perm_var (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
 
rtx expand_vec_series_expr (machine_mode vmode, rtx op0, rtx op1, rtx target)
 
rtx expand_vec_cmp_expr (tree type, tree exp, rtx target)
 
rtx expand_mult_highpart (machine_mode mode, rtx op0, rtx op1, rtx target, bool uns_p)
 
static void find_cc_set (rtx x, const_rtx pat, void *data)
 
static bool expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
 
static rtx maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
 
static rtx maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val, enum memmodel model)
 
static rtx maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
 
static rtx maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
 
rtx expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
 
rtx expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
 
rtx expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
 
bool expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval, rtx mem, rtx expected, rtx desired, bool is_weak, enum memmodel succ_model, enum memmodel fail_model)
 
static void expand_asm_memory_blockage (void)
 
static void expand_memory_blockage (void)
 
void expand_asm_reg_clobber_mem_blockage (HARD_REG_SET regs)
 
void expand_mem_thread_fence (enum memmodel model)
 
void expand_mem_signal_fence (enum memmodel model)
 
rtx expand_atomic_load (rtx target, rtx mem, enum memmodel model)
 
rtx expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
 
static void get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
 
static rtx maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code, enum memmodel model, bool after)
 
static rtx maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem, rtx val, bool use_memmodel, enum memmodel model, bool after)
 
static rtx expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val, enum rtx_code code, enum memmodel model, bool after)
 
rtx expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code, enum memmodel model, bool after)
 
bool insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
 
bool valid_multiword_target_p (rtx target)
 
void create_integer_operand (class expand_operand *op, poly_int64 intval)
 
static bool maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno, class expand_operand *op)
 
static bool maybe_legitimize_operand (enum insn_code icode, unsigned int opno, class expand_operand *op)
 
void create_convert_operand_from_type (class expand_operand *op, rtx value, tree type)
 
static bool can_reuse_operands_p (enum insn_code icode, unsigned int opno1, unsigned int opno2, const class expand_operand *op1, const class expand_operand *op2)
 
bool maybe_legitimize_operands (enum insn_code icode, unsigned int opno, unsigned int nops, class expand_operand *ops)
 
rtx_insnmaybe_gen_insn (enum insn_code icode, unsigned int nops, class expand_operand *ops)
 
bool maybe_expand_insn (enum insn_code icode, unsigned int nops, class expand_operand *ops)
 
bool maybe_expand_jump_insn (enum insn_code icode, unsigned int nops, class expand_operand *ops)
 
void expand_insn (enum insn_code icode, unsigned int nops, class expand_operand *ops)
 
void expand_jump_insn (enum insn_code icode, unsigned int nops, class expand_operand *ops)
 

Function Documentation

◆ add_equal_note()

static bool add_equal_note ( rtx_insn * insns,
rtx target,
enum rtx_code code,
rtx op0,
rtx op1,
machine_mode op0_mode )
static
Add a REG_EQUAL note to the last insn in INSNS.  TARGET is being set to
the result of operation CODE applied to OP0 (and OP1 if it is a binary
operation).  OP0_MODE is OP0's mode.

If the last insn does not set TARGET, don't do anything, but return true.

If the last insn or a previous insn sets TARGET and TARGET is one of OP0
or OP1, don't add the REG_EQUAL note but return false.  Our caller can then
try again, ensuring that TARGET is not one of the operands.   

References copy_rtx(), gcc_assert, GET_CODE, GET_MODE, GET_MODE_UNIT_SIZE, GET_RTX_CLASS, INSN_P, insns, MEM_P, NEXT_INSN(), NULL_RTX, reg_overlap_mentioned_p(), RTX_BIN_ARITH, RTX_COMM_ARITH, RTX_COMM_COMPARE, RTX_COMPARE, rtx_equal_p(), RTX_UNARY, SET_DEST, set_for_reg_notes(), SET_SRC, set_unique_reg_note(), simplify_gen_unary(), single_set(), and XEXP.

Referenced by expand_binop_directly(), expand_clrsb_using_clz(), expand_ctz(), expand_doubleword_clz_ctz_ffs(), expand_doubleword_popcount(), expand_ffs(), expand_unop_direct(), and maybe_emit_unop_insn().

◆ avoid_expensive_constant()

static rtx avoid_expensive_constant ( machine_mode mode,
optab binoptab,
int opn,
rtx x,
bool unsignedp )
static
X is to be used in mode MODE as operand OPN to BINOPTAB.  If we're
optimizing, and if the operand is a constant that costs more than
1 instruction, force the constant into a register and return that
register.  Return X otherwise.  UNSIGNEDP says whether X is unsigned.   

References CONST_INT_P, CONSTANT_P, convert_modes(), force_reg(), GEN_INT, INTVAL, expand_operand::mode, optimize_insn_for_speed_p(), rtx_cost(), set_src_cost(), and trunc_int_for_mode().

Referenced by expand_binop(), expand_binop_directly(), and expand_twoval_binop().

◆ can_compare_p()

bool can_compare_p ( enum rtx_code code,
machine_mode mode,
enum can_compare_purpose purpose )
True if we can perform a comparison of mode MODE straightforwardly.
PURPOSE describes how this comparison will be used.  CODE is the rtx
comparison code we will be using.

??? Actually, CODE is slightly weaker than that.  A target is still
required to implement all of the normal bcc operations, but not
required to implement all (or any) of the unordered bcc operations.   

References ccp_cmov, ccp_jump, ccp_store_flag, const0_rtx, GET_MODE_WIDER_MODE(), insn_operand_matches(), optab_handler(), and PUT_MODE().

Referenced by by_pieces_mode_supported_p(), do_compare_rtx_and_jump(), do_jump_1(), emit_block_cmp_via_loop(), emit_cmp_and_jump_insns(), emit_store_flag(), emit_store_flag_force(), emit_store_flag_int(), and compare_by_pieces_d::prepare_mode().

◆ can_reuse_operands_p()

static bool can_reuse_operands_p ( enum insn_code icode,
unsigned int opno1,
unsigned int opno2,
const class expand_operand * op1,
const class expand_operand * op2 )
inlinestatic
Return true if the requirements on operands OP1 and OP2 of instruction
ICODE are similar enough for the result of legitimizing OP1 to be
reusable for OP2.  OPNO1 and OPNO2 are the operand numbers associated
with OP1 and OP2 respectively.   

References EXPAND_ADDRESS, EXPAND_CONVERT_FROM, EXPAND_CONVERT_TO, EXPAND_FIXED, EXPAND_INPUT, EXPAND_INTEGER, EXPAND_OUTPUT, EXPAND_UNDEFINED_INPUT, gcc_unreachable, insn_data, expand_operand::mode, insn_operand_data::mode, insn_data_d::operand, expand_operand::type, and expand_operand::unsigned_p.

Referenced by maybe_legitimize_operands().

◆ can_vcond_compare_p()

bool can_vcond_compare_p ( enum rtx_code code,
machine_mode value_mode,
machine_mode cmp_op_mode )
Return whether the backend can emit a vector comparison (vcond/vcondu) for
code CODE, comparing operands of mode CMP_OP_MODE and producing a result
with VALUE_MODE.   

References get_vcond_icode(), insn_predicate_matches_p(), and unsigned_optab_p().

Referenced by vcond_icode_p().

◆ can_vec_cmp_compare_p()

bool can_vec_cmp_compare_p ( enum rtx_code code,
machine_mode value_mode,
machine_mode mask_mode )
Return whether the backend can emit a vector comparison (vec_cmp/vec_cmpu)
for code CODE, comparing operands of mode VALUE_MODE and producing a result
with MASK_MODE.   

References get_vec_cmp_icode(), insn_predicate_matches_p(), and unsigned_optab_p().

Referenced by vec_cmp_icode_p().

◆ can_vec_extract_var_idx_p()

bool can_vec_extract_var_idx_p ( machine_mode vec_mode,
machine_mode extr_mode )
Return whether the backend can emit a vec_extract instruction with
a non-constant index.   

References alloca_raw_REG, convert_optab_handler(), insn_data, insn_operand_matches(), LAST_VIRTUAL_REGISTER, operand_data::mode, data::operand, and VECTOR_MODE_P.

Referenced by gimple_expand_vec_set_extract_expr(), and vectorizable_live_operation().

◆ can_vec_set_var_idx_p()

bool can_vec_set_var_idx_p ( machine_mode vec_mode)
Return whether the backend can emit vector set instructions for inserting
element into vector at variable index position.   

References alloca_raw_REG, GET_MODE_INNER, insn_data, insn_operand_matches(), LAST_VIRTUAL_REGISTER, operand_data::mode, data::operand, optab_handler(), and VECTOR_MODE_P.

Referenced by gimple_expand_vec_set_extract_expr().

◆ commutative_optab_p()

static bool commutative_optab_p ( optab binoptab)
static
Return true if BINOPTAB implements a commutative binary operation.   

References GET_RTX_CLASS, and RTX_COMM_ARITH.

Referenced by expand_binop(), and expand_binop_directly().

◆ create_convert_operand_from_type()

void create_convert_operand_from_type ( class expand_operand * op,
rtx value,
tree type )
Make OP describe an input operand that should have the same value
as VALUE, after any mode conversion that the target might request.
TYPE is the type of VALUE.   

References create_convert_operand_from(), TYPE_MODE, and TYPE_UNSIGNED.

Referenced by expand_vec_perm_const(), and try_casesi().

◆ create_integer_operand()

void create_integer_operand ( class expand_operand * op,
poly_int64 intval )

◆ debug_optab_libfuncs()

DEBUG_FUNCTION void debug_optab_libfuncs ( void )
Debug facility for use in GDB.   
Print information about the current contents of the optabs on
STDERR.   

References convert_optab_libfunc(), gcc_assert, GET_CODE, GET_MODE_NAME, GET_RTX_NAME, i, optab_libfunc(), and XSTR.

◆ emit_cmp_and_jump_insn_1()

static void emit_cmp_and_jump_insn_1 ( rtx test,
machine_mode mode,
rtx label,
direct_optab cmp_optab,
profile_probability prob,
bool test_branch )
static

◆ emit_cmp_and_jump_insns() [1/2]

void emit_cmp_and_jump_insns ( rtx x,
rtx y,
enum rtx_code comparison,
rtx size,
machine_mode mode,
int unsignedp,
rtx label,
profile_probability prob )
Overloaded version of emit_cmp_and_jump_insns in which VAL is unknown.   

References emit_cmp_and_jump_insns(), NULL, and y.

◆ emit_cmp_and_jump_insns() [2/2]

void emit_cmp_and_jump_insns ( rtx x,
rtx y,
enum rtx_code comparison,
rtx size,
machine_mode mode,
int unsignedp,
tree val,
rtx label,
profile_probability prob )
Generate code to compare X with Y so that the condition codes are
set and to jump to LABEL if the condition is true.  If X is a
constant and Y is not a constant, then the comparison is swapped to
ensure that the comparison RTL has the canonical form.

UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
need to be widened.  UNSIGNEDP is also used to select the proper
branch condition code.

If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.

MODE is the mode of the inputs (in case they are const_int).

COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
It will be potentially converted into an unsigned variant based on
UNSIGNEDP to select a proper jump instruction.

PROB is the probability of jumping to LABEL.  If the comparison is against
zero then VAL contains the expression from which the non-zero RTL is
derived.   

References can_compare_p(), ccp_jump, CONST0_RTX, CONSTANT_P, emit_cmp_and_jump_insn_1(), force_reg(), GET_MODE, OPTAB_LIB_WIDEN, prepare_cmp_insn(), swap_commutative_operands_p(), swap_condition(), unsigned_condition(), validate_test_and_branch(), and y.

Referenced by allocate_dynamic_stack_space(), anti_adjust_stack_and_probe(), anti_adjust_stack_and_probe_stack_clash(), asan_clear_shadow(), asan_emit_stack_protection(), do_compare_rtx_and_jump(), do_tablejump(), emit_block_cmp_via_loop(), emit_block_move_via_loop(), emit_block_move_via_oriented_loop(), emit_cmp_and_jump_insns(), emit_stack_clash_protection_probe_loop_end(), emit_stack_clash_protection_probe_loop_start(), expand_builtin_atomic_compare_exchange(), expand_compare_and_swap_loop(), expand_copysign_absneg(), expand_doubleword_clz_ctz_ffs(), expand_ffs(), expand_fix(), expand_float(), inline_string_cmp(), prepare_call_address(), probe_stack_range(), sjlj_emit_function_enter(), stack_protect_epilogue(), store_expr(), try_casesi(), and try_store_by_multiple_pieces().

◆ emit_conditional_add()

rtx emit_conditional_add ( rtx target,
enum rtx_code code,
rtx op0,
rtx op1,
machine_mode cmode,
rtx op2,
rtx op3,
machine_mode mode,
int unsignedp )
Emit a conditional addition instruction if the machine supports one for that
condition and machine mode.

OP0 and OP1 are the operands that should be compared using CODE.  CMODE is
the mode to use should they be constants.  If it is VOIDmode, they cannot
both be constants.

OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
should be stored there.  MODE is the mode to use should they be constants.
If it is VOIDmode, they cannot both be constants.

The result is either TARGET (perhaps modified) or NULL_RTX if the operation
is not supported.   

References COMPARISON_P, const0_rtx, const1_rtx, constm1_rtx, convert_move(), create_fixed_operand(), create_input_operand(), create_output_operand(), delete_insns_since(), do_pending_stack_adjust(), gen_reg_rtx(), GET_CODE, get_last_insn(), GET_MODE, last, maybe_expand_insn(), expand_operand::mode, NULL_RTX, optab_handler(), OPTAB_WIDEN, prepare_cmp_insn(), simplify_gen_relational(), swap_commutative_operands_p(), swap_condition(), expand_operand::target, unsigned_condition(), expand_operand::value, and XEXP.

Referenced by noce_try_addcc().

◆ emit_conditional_move() [1/2]

rtx emit_conditional_move ( rtx target,
rtx comparison,
rtx rev_comparison,
rtx op2,
rtx op3,
machine_mode mode )
Helper function that, in addition to COMPARISON, also tries
the reversed REV_COMPARISON with swapped OP2 and OP3.  As opposed
to when we pass the specific constituents of a comparison, no
additional insns are emitted for it.  It might still be necessary
to emit more than one insn for the final conditional move, though.   

References emit_conditional_move_1(), expand_operand::mode, NULL_RTX, and expand_operand::target.

◆ emit_conditional_move() [2/2]

rtx emit_conditional_move ( rtx target,
struct rtx_comparison comp,
rtx op2,
rtx op3,
machine_mode mode,
int unsignedp )
Emit a conditional move instruction if the machine supports one for that
condition and machine mode.

OP0 and OP1 are the operands that should be compared using CODE.  CMODE is
the mode to use should they be constants.  If it is VOIDmode, they cannot
both be constants.

OP2 should be stored in TARGET if the comparison is true, otherwise OP3
should be stored there.  MODE is the mode to use should they be constants.
If it is VOIDmode, they cannot both be constants.

The result is either TARGET (perhaps modified) or NULL_RTX if the operation
is not supported.   

References can_create_pseudo_p, comp, COMPARISON_P, const0_rtx, const1_rtx, CONSTANT_P, constm1_rtx, COSTS_N_INSNS, delete_insns_since(), direct_optab_handler(), do_pending_stack_adjust(), emit_conditional_move_1(), emit_move_insn(), force_reg(), gen_reg_rtx(), GET_CODE, get_last_insn(), GET_MODE, last, expand_operand::mode, NULL, NULL_RTX, OPTAB_WIDEN, optimize_insn_for_speed_p(), prepare_cmp_insn(), restore_pending_stack_adjust(), reversed_comparison_code_parts(), rtx_cost(), rtx_equal_p(), save_pending_stack_adjust(), simplify_gen_relational(), swap_commutative_operands_p(), swap_condition(), expand_operand::target, unsigned_condition(), and XEXP.

Referenced by emit_store_flag(), expand_cond_expr_using_cmove(), expand_doubleword_shift_condmove(), expand_expr_real_2(), expand_sdiv_pow2(), and noce_emit_cmove().

◆ emit_conditional_move_1()

◆ emit_conditional_neg_or_complement()

rtx emit_conditional_neg_or_complement ( rtx target,
rtx_code code,
machine_mode mode,
rtx cond,
rtx op1,
rtx op2 )
Emit a conditional negate or bitwise complement using the
negcc or notcc optabs if available.  Return NULL_RTX if such operations
are not available.  Otherwise return the RTX holding the result.
TARGET is the desired destination of the result.  COMP is the comparison
on which to negate.  If COND is true move into TARGET the negation
or bitwise complement of OP1.  Otherwise move OP2 into TARGET.
CODE is either NEG or NOT.  MODE is the machine mode in which the
operation is performed.   

References convert_move(), create_fixed_operand(), create_input_operand(), create_output_operand(), delete_insns_since(), direct_optab_handler(), gcc_unreachable, gen_reg_rtx(), get_last_insn(), last, maybe_expand_insn(), expand_operand::mode, NULL_RTX, expand_operand::target, unknown_optab, and expand_operand::value.

Referenced by noce_try_inverse_constants().

◆ emit_indirect_jump()

void emit_indirect_jump ( rtx loc)

◆ emit_libcall_block()

void emit_libcall_block ( rtx_insn * insns,
rtx target,
rtx result,
rtx equiv )
Emit code to make a call to a constant function or a library call.   

References emit_libcall_block_1(), insns, and no_conflict_data::target.

Referenced by convert_mode_scalar(), expand_fix(), expand_fixed_convert(), expand_float(), expand_twoval_binop_libfunc(), and prepare_float_lib_cmp().

◆ emit_libcall_block_1()

static void emit_libcall_block_1 ( rtx_insn * insns,
rtx target,
rtx result,
rtx equiv,
bool equiv_may_trap )
static
Emit code to make a call to a constant function or a library call.

INSNS is a list containing all insns emitted in the call.
These insns leave the result in RESULT.  Our block is to copy RESULT
to TARGET, which is logically equivalent to EQUIV.

We first emit any insns that set a pseudo on the assumption that these are
loading constants into registers; doing so allows them to be safely cse'ed
between blocks.  Then we emit all the other insns in the block, followed by
an insn to move RESULT to TARGET.  This last insn will have a REQ_EQUAL
note with an operand of EQUIV.   

References add_insn(), CALL_P, cfun, const0_rtx, copy_rtx(), emit_move_insn(), find_reg_note(), gen_reg_rtx(), GET_MODE, no_conflict_data::insn, insns, INT_MIN, INTVAL, LABEL_P, last, make_reg_eh_region_note_nothrow_nononlocal(), may_trap_p(), NEXT_INSN(), no_conflict_move_test(), note_stores(), NULL_RTX, PREV_INSN(), REG_P, REG_USERVAR_P, REGNO, remove_note(), SET_DEST, set_dst_reg_note(), SET_NEXT_INSN(), SET_PREV_INSN(), single_set(), no_conflict_data::target, and XEXP.

Referenced by emit_libcall_block(), expand_binop(), and expand_unop().

◆ emit_unop_insn()

void emit_unop_insn ( enum insn_code icode,
rtx target,
rtx op0,
enum rtx_code code )
Generate an instruction whose insn-code is INSN_CODE,
with two operands: an output TARGET and an input OP0.
TARGET *must* be nonzero, and the output is always stored there.
CODE is an rtx code such that (CODE OP0) is an rtx that describes
the value that is stored into TARGET.   

References gcc_assert, maybe_emit_unop_insn(), and expand_operand::target.

Referenced by compress_float_constant(), convert_mode_scalar(), convert_move(), expand_copysign_absneg(), expand_fixed_convert(), and expand_float().

◆ expand_abs()

◆ expand_abs_nojump()

rtx expand_abs_nojump ( machine_mode mode,
rtx op0,
rtx target,
int result_unsignedp )
Emit code to compute the absolute value of OP0, with result to
 TARGET if convenient.  (TARGET may be 0.)  The return value says
 where the result actually is to be found.

 MODE is the mode of the operand; the mode of the result is
 different but can be deduced from MODE.

References delete_insns_since(), expand_absneg_bit(), expand_binop(), expand_shift(), expand_unop(), get_last_insn(), GET_MODE_CLASS, GET_MODE_PRECISION(), HONOR_SIGNED_ZEROS(), is_a(), is_int_mode(), last, expand_operand::mode, NULL_RTX, optab_handler(), OPTAB_LIB_WIDEN, OPTAB_WIDEN, optimize_insn_for_speed_p(), and expand_operand::target.

Referenced by expand_abs(), and noce_try_abs().

◆ expand_absneg_bit()

◆ expand_asm_memory_blockage()

static void expand_asm_memory_blockage ( void )
static
Generate asm volatile("" : : : "memory") as the memory blockage.   

References emit_insn(), gen_rtvec(), gen_rtx_MEM(), MEM_VOLATILE_P, rtvec_alloc(), and UNKNOWN_LOCATION.

Referenced by expand_memory_blockage().

◆ expand_asm_reg_clobber_mem_blockage()

void expand_asm_reg_clobber_mem_blockage ( HARD_REG_SET regs)
Generate asm volatile("" : : : "memory") as a memory blockage, at the
same time clobbering the register set specified by REGS.   

References emit_insn(), gcc_assert, gen_rtx_MEM(), i, MEM_VOLATILE_P, regno_reg_rtx, rtvec_alloc(), RTVEC_ELT, TEST_HARD_REG_BIT, and UNKNOWN_LOCATION.

Referenced by gen_call_used_regs_seq().

◆ expand_atomic_compare_and_swap()

bool expand_atomic_compare_and_swap ( rtx * ptarget_bool,
rtx * ptarget_oval,
rtx mem,
rtx expected,
rtx desired,
bool is_weak,
enum memmodel succ_model,
enum memmodel fail_model )
This function expands the atomic compare exchange operation:

*PTARGET_BOOL is an optional place to store the boolean success/failure.
*PTARGET_OVAL is an optional place to store the old value from memory.
Both target parameters may be NULL or const0_rtx to indicate that we do
not care about that return value.  Both target parameters are updated on
success to the actual location of the corresponding result.

MEMMODEL is the memory model variant to use.

The return value of the function is true for success.   

References can_atomic_load_p(), const0_rtx, convert_memory_address, copy_to_reg(), create_fixed_operand(), create_input_operand(), create_integer_operand(), create_output_operand(), direct_optab_handler(), emit_library_call_value(), emit_move_insn(), emit_store_flag_force(), find_cc_set(), gen_reg_rtx(), get_last_insn(), GET_MODE, have_insn_for(), insn_data, is_mm_sync(), LCT_NORMAL, maybe_expand_insn(), MEM_P, expand_operand::mode, insn_operand_data::mode, note_stores(), NULL, NULL_RTX, insn_data_d::operand, optab_handler(), optab_libfunc(), ptr_mode, reg_overlap_mentioned_p(), expand_operand::target, expand_operand::value, and XEXP.

Referenced by expand_builtin_atomic_compare_exchange(), expand_builtin_compare_and_swap(), expand_compare_and_swap_loop(), and expand_ifn_atomic_compare_exchange().

◆ expand_atomic_exchange()

rtx expand_atomic_exchange ( rtx target,
rtx mem,
rtx val,
enum memmodel model )
This function expands the atomic exchange operation:
atomically store VAL in MEM and return the previous value in MEM.

MEMMODEL is the memory model variant to use.
TARGET is an optional place to stick the return value.   

References can_atomic_load_p(), GET_MODE, is_mm_sync(), maybe_emit_atomic_exchange(), maybe_emit_compare_and_swap_exchange_loop(), expand_operand::mode, NULL_RTX, and expand_operand::target.

Referenced by expand_builtin_atomic_exchange().

◆ expand_atomic_fetch_op()

rtx expand_atomic_fetch_op ( rtx target,
rtx mem,
rtx val,
enum rtx_code code,
enum memmodel model,
bool after )
This function expands an atomic fetch_OP or OP_fetch operation:
TARGET is an option place to stick the return value.  const0_rtx indicates
the result is unused.
atomically fetch MEM, perform the operation with VAL and return it to MEM.
CODE is the operation being performed (OP)
MEMMODEL is the memory model variant to use.
AFTER is true to return the result of the operation (OP_fetch).
AFTER is false to return the value before the operation (fetch_OP).   

References can_atomic_load_p(), can_compare_and_swap_p(), const0_rtx, convert_memory_address, emit_insn(), emit_library_call_value(), emit_move_insn(), end_sequence(), expand_atomic_fetch_op_no_fallback(), expand_compare_and_swap_loop(), expand_simple_binop(), expand_simple_unop(), gen_reg_rtx(), get_atomic_op_for_code(), get_insns(), GET_MODE, is_mm_sync(), LCT_NORMAL, NULL, NULL_RTX, OPTAB_LIB_WIDEN, optab_libfunc(), ptr_mode, register_operand(), start_sequence(), and XEXP.

Referenced by expand_builtin_atomic_fetch_op(), expand_builtin_sync_operation(), expand_ifn_atomic_bit_test_and(), and expand_ifn_atomic_op_fetch_cmp_0().

◆ expand_atomic_fetch_op_no_fallback()

static rtx expand_atomic_fetch_op_no_fallback ( rtx target,
rtx mem,
rtx val,
enum rtx_code code,
enum memmodel model,
bool after )
static
This function expands an atomic fetch_OP or OP_fetch operation:
TARGET is an option place to stick the return value.  const0_rtx indicates
the result is unused.
atomically fetch MEM, perform the operation with VAL and return it to MEM.
CODE is the operation being performed (OP)
MEMMODEL is the memory model variant to use.
AFTER is true to return the result of the operation (OP_fetch).
AFTER is false to return the value before the operation (fetch_OP).

This function will *only* generate instructions if there is a direct
optab. No compare and swap loops or libcalls will be generated.  

References const0_rtx, expand_simple_binop(), expand_simple_unop(), get_atomic_op_for_code(), GET_MODE, maybe_emit_op(), maybe_optimize_fetch_op(), expand_operand::mode, NULL_RTX, and OPTAB_LIB_WIDEN.

Referenced by expand_atomic_fetch_op().

◆ expand_atomic_load()

rtx expand_atomic_load ( rtx target,
rtx mem,
enum memmodel model )

◆ expand_atomic_store()

rtx expand_atomic_store ( rtx mem,
rtx val,
enum memmodel model,
bool use_release )

◆ expand_atomic_test_and_set()

rtx expand_atomic_test_and_set ( rtx target,
rtx mem,
enum memmodel model )
This function expands the atomic test_and_set operation:
atomically store a boolean TRUE into MEM and return the previous value.

MEMMODEL is the memory model variant to use.
TARGET is an optional place to stick the return value.   

References const0_rtx, const1_rtx, emit_store_flag_force(), gcc_assert, gen_int_mode(), gen_reg_rtx(), GET_MODE, maybe_emit_atomic_exchange(), maybe_emit_atomic_test_and_set(), maybe_emit_compare_and_swap_exchange_loop(), maybe_emit_sync_lock_test_and_set(), expand_operand::mode, expand_operand::target, and targetm.

Referenced by expand_builtin_atomic_test_and_set().

◆ expand_binop()

rtx expand_binop ( machine_mode mode,
optab binoptab,
rtx op0,
rtx op1,
rtx target,
int unsignedp,
enum optab_methods methods )
Generate code to perform an operation specified by BINOPTAB
on operands OP0 and OP1, with result having machine-mode MODE.

UNSIGNEDP is for the case where we have to widen the operands
to perform the operation.  It says to use zero-extension.

If TARGET is nonzero, the value
is generated there, if it is convenient to do so.
In all cases an rtx is returned for the locus of the value;
this may or may not be TARGET.   

References as_a(), avoid_expensive_constant(), BITS_PER_WORD, CLASS_HAS_WIDER_MODES_P, commutative_optab_p(), CONST0_RTX, const0_rtx, CONST_INT_P, convert_move(), convert_optab_handler(), convert_optab_p(), convert_to_mode(), copy_rtx(), delete_insns_since(), emit_clobber(), emit_insn(), emit_libcall_block_1(), emit_library_call_value(), emit_move_insn(), emit_store_flag_force(), end_sequence(), expand_binop(), expand_binop_directly(), expand_doubleword_divmod(), expand_doubleword_mod(), expand_doubleword_mult(), expand_doubleword_shift(), expand_vector_broadcast(), find_widening_optab_handler, FOR_EACH_WIDER_MODE, force_reg(), gcc_assert, gen_int_mode(), gen_int_shift_amount(), gen_lowpart, gen_reg_rtx(), get_insns(), get_last_insn(), GET_MODE, GET_MODE_2XWIDER_MODE(), GET_MODE_BITSIZE(), GET_MODE_CLASS, GET_MODE_INNER, GET_MODE_PRECISION(), GET_MODE_SIZE(), GET_MODE_WIDER_MODE(), i, insns, INTVAL, is_int_mode(), last, LCT_CONST, expand_operand::mode, negate_rtx(), NULL_RTX, operand_subword(), operand_subword_force(), OPTAB_DIRECT, optab_handler(), OPTAB_LIB, OPTAB_LIB_WIDEN, optab_libfunc(), OPTAB_MUST_WIDEN, OPTAB_WIDEN, optimize_insn_for_speed_p(), reg_overlap_mentioned_p(), REG_P, rtx_equal_p(), set_dst_reg_note(), shift_optab_p(), simplify_gen_unary(), start_sequence(), STORE_FLAG_VALUE, swap_commutative_operands_with_target(), expand_operand::target, targetm, trapv_binoptab_p(), TRULY_NOOP_TRUNCATION_MODES_P, UINTVAL, unknown_optab, valid_multiword_target_p(), expand_operand::value, widen_operand(), widened_mode(), and word_mode.

Referenced by add_mask_and_len_args(), adjust_stack_1(), align_dynamic_address(), allocate_dynamic_stack_space(), asan_emit_stack_protection(), convert_mode_scalar(), do_compare_rtx_and_jump(), do_jump_by_parts_zero_rtx(), do_store_flag(), emit_block_cmp_via_loop(), emit_push_insn(), emit_store_flag(), emit_store_flag_1(), emit_store_flag_int(), expand_abs_nojump(), expand_absneg_bit(), expand_addsub_overflow(), expand_and(), expand_binop(), expand_binop_directly(), expand_builtin_issignaling(), expand_builtin_next_arg(), expand_builtin_signbit(), expand_clrsb_using_clz(), expand_copysign(), expand_copysign_absneg(), expand_copysign_bit(), expand_ctz(), expand_dec(), expand_divmod(), expand_doubleword_clz_ctz_ffs(), expand_doubleword_mult(), expand_doubleword_parity(), expand_doubleword_popcount(), expand_expr_real_2(), expand_ffs(), expand_fix(), expand_float(), expand_fn_using_insn(), expand_inc(), expand_mul_overflow(), expand_mult(), expand_mult_highpart(), expand_one_cmpl_abs_nojump(), expand_parity(), expand_sdiv_pow2(), expand_shift_1(), expand_simple_binop(), expand_single_bit_test(), expand_smod_pow2(), expand_unop(), expand_widening_mult(), expmed_mult_highpart_optab(), extract_fixed_bit_field_1(), extract_split_bit_field(), find_shift_sequence(), compare_by_pieces_d::generate(), get_dynamic_stack_base(), noce_emit_move_insn(), noce_try_sign_mask(), optimize_bitfield_assignment_op(), probe_stack_range(), push_block(), round_push(), sign_expand_binop(), simplify_expand_binop(), store_constructor(), store_expr(), store_fixed_bit_field_1(), and widen_leading().

◆ expand_binop_directly()

static rtx expand_binop_directly ( enum insn_code icode,
machine_mode mode,
optab binoptab,
rtx op0,
rtx op1,
rtx target,
int unsignedp,
enum optab_methods methods,
rtx_insn * last )
static

◆ expand_clrsb_using_clz()

static rtx expand_clrsb_using_clz ( scalar_int_mode mode,
rtx op0,
rtx target )
static
Attempt to emit (clrsb:mode op0) as
(plus:mode (clz:mode (xor:mode op0 (ashr:mode op0 (const_int prec-1))))
           (const_int -1))
if CLZ_DEFINED_VALUE_AT_ZERO (mode, val) is 2 and val is prec,
or as
(clz:mode (ior:mode (xor:mode (ashl:mode op0 (const_int 1))
                         (ashr:mode op0 (const_int prec-1)))
               (const_int 1)))
otherwise.   

References add_equal_note(), CLZ_DEFINED_VALUE_AT_ZERO, const1_rtx, constm1_rtx, emit_insn(), end_sequence(), expand_binop(), expand_unop_direct(), GEN_INT, get_insns(), GET_MODE_PRECISION(), expand_operand::mode, NULL_RTX, OPTAB_DIRECT, optab_handler(), optimize_insn_for_size_p(), start_sequence(), and expand_operand::target.

Referenced by expand_unop().

◆ expand_compare_and_swap_loop()

static bool expand_compare_and_swap_loop ( rtx mem,
rtx old_reg,
rtx new_reg,
rtx seq )
static
This is a helper function for the other atomic operations.  This function
emits a loop that contains SEQ that iterates until a compare-and-swap
operation at the end succeeds.  MEM is the memory to be modified.  SEQ is
a set of instructions that takes a value from OLD_REG as an input and
produces a value in NEW_REG as an output.  Before SEQ, OLD_REG will be
set to the current contents of MEM.  After SEQ, a compare-and-swap will
attempt to update MEM with NEW_REG.  The function returns true when the
loop was generated successfully.   

References const0_rtx, emit_cmp_and_jump_insns(), emit_insn(), emit_label(), emit_move_insn(), expand_atomic_compare_and_swap(), gen_label_rtx(), gen_reg_rtx(), GET_MODE, profile_probability::guessed_never(), MEMMODEL_RELAXED, MEMMODEL_SYNC_SEQ_CST, expand_operand::mode, and NULL_RTX.

Referenced by expand_atomic_fetch_op(), and maybe_emit_compare_and_swap_exchange_loop().

◆ expand_copysign()

rtx expand_copysign ( rtx op0,
rtx op1,
rtx target )
Expand the C99 copysign operation.  OP0 and OP1 must be the same
scalar floating point mode.  Return NULL if we do not know how to
expand the operation inline.   

References as_a(), CONST_DOUBLE_AS_FLOAT_P, CONST_DOUBLE_REAL_VALUE, expand_binop(), expand_copysign_absneg(), expand_copysign_bit(), gcc_assert, GET_MODE, real_format::has_signed_zero, expand_operand::mode, NULL, NULL_RTX, OPTAB_DIRECT, optab_handler(), real_isneg(), REAL_MODE_FORMAT, real_format::signbit_ro, real_format::signbit_rw, and simplify_unary_operation().

Referenced by expand_builtin_copysign().

◆ expand_copysign_absneg()

static rtx expand_copysign_absneg ( scalar_float_mode mode,
rtx op0,
rtx op1,
rtx target,
int bitpos,
bool op0_is_abs )
static
A subroutine of expand_copysign, perform the copysign operation using the
abs and neg primitives advertised to exist on the target.  The assumption
is that we have a split register file, and leaving op0 in fp registers,
and not playing with subregs so much, will help the register allocator.   

References as_a(), BITS_PER_WORD, const0_rtx, CONST_DOUBLE_AS_FLOAT_P, copy_to_reg(), emit_cmp_and_jump_insns(), emit_label(), emit_move_insn(), emit_unop_insn(), expand_binop(), expand_unop(), FLOAT_WORDS_BIG_ENDIAN, gen_label_rtx(), gen_lowpart, gen_reg_rtx(), GET_MODE_BITSIZE(), GET_MODE_PRECISION(), GET_MODE_SIZE(), immed_wide_int_const(), insn_data, int_mode_for_mode(), expand_operand::mode, NULL, NULL_RTX, operand_subword_force(), optab_handler(), OPTAB_LIB_WIDEN, wi::set_bit_in_zero(), simplify_unary_operation(), expand_operand::target, and word_mode.

Referenced by expand_copysign().

◆ expand_copysign_bit()

static rtx expand_copysign_bit ( scalar_float_mode mode,
rtx op0,
rtx op1,
rtx target,
int bitpos,
bool op0_is_abs )
static

◆ expand_ctz()

static rtx expand_ctz ( scalar_int_mode mode,
rtx op0,
rtx target )
static
Try calculating ctz(x) as K - clz(x & -x) ,
where K is GET_MODE_PRECISION(mode) - 1.

Both __builtin_ctz and __builtin_clz are undefined at zero, so we
don't have to worry about what the hardware does in that case.  (If
the clz instruction produces the usual value at 0, which is K, the
result of this code sequence will be -1; expand_ffs, below, relies
on this.  It might be nice to have it be K instead, for consistency
with the (very few) processors that provide a ctz with a defined
value, but that would take one more instruction, and it would be
less convenient for expand_ffs anyway.   

References add_equal_note(), emit_insn(), end_sequence(), expand_binop(), expand_unop_direct(), gen_int_mode(), get_insns(), GET_MODE_PRECISION(), expand_operand::mode, NULL_RTX, OPTAB_DIRECT, optab_handler(), start_sequence(), and expand_operand::target.

Referenced by expand_ffs(), and expand_unop().

◆ expand_doubleword_bswap()

static rtx expand_doubleword_bswap ( machine_mode mode,
rtx op,
rtx target )
static

◆ expand_doubleword_clz_ctz_ffs()

static rtx expand_doubleword_clz_ctz_ffs ( scalar_int_mode mode,
rtx op0,
rtx target,
optab unoptab )
static
Try calculating clz, ctz or ffs of a double-word quantity as two clz, ctz or
ffs operations on word-sized quantities, choosing which based on whether the
high (for clz) or low (for ctz and ffs) word is nonzero.   

References add_equal_note(), CONST0_RTX, const0_rtx, convert_move(), emit_barrier(), emit_cmp_and_jump_insns(), emit_insn(), emit_jump_insn(), emit_label(), end_sequence(), expand_binop(), expand_ffs(), expand_unop_direct(), force_reg(), gcc_assert, gen_highpart(), gen_int_mode(), gen_label_rtx(), gen_lowpart, gen_reg_rtx(), get_insns(), GET_MODE_BITSIZE(), expand_operand::mode, NULL_RTX, OPTAB_DIRECT, optab_handler(), start_sequence(), expand_operand::target, targetm, and word_mode.

Referenced by expand_unop().

◆ expand_doubleword_divmod()

rtx expand_doubleword_divmod ( machine_mode mode,
rtx op0,
rtx op1,
rtx * rem,
bool unsignedp )
Similarly to the above function, but compute both quotient and remainder.
Quotient can be computed from the remainder as:
rem = op0 % op1;  // Handled using expand_doubleword_mod
quot = (op0 - rem) * inv; // inv is multiplicative inverse of op1 modulo
                     // 2 * BITS_PER_WORD

We can also handle cases where op1 is a multiple of power of two constant
and constant handled by expand_doubleword_mod.
op11 = 1 << __builtin_ctz (op1);
op12 = op1 / op11;
rem1 = op0 % op12;  // Handled using expand_doubleword_mod
quot1 = (op0 - rem1) * inv; // inv is multiplicative inverse of op12 modulo
                       // 2 * BITS_PER_WORD
rem = (quot1 % op11) * op12 + rem1;
quot = quot1 / op11;   

References a, b, BITS_PER_WORD, CALL_P, const1_rtx, ctz_hwi(), expand_divmod(), expand_doubleword_mod(), expand_simple_binop(), wide_int_storage::from(), GEN_INT, get_insns(), get_last_insn(), HOST_WIDE_INT_1, immed_wide_int_const(), INTVAL, last, wi::mod_inv(), expand_operand::mode, NEXT_INSN(), NULL_RTX, OPTAB_DIRECT, pow2p_hwi(), wi::shifted_mask(), and UNSIGNED.

Referenced by expand_binop(), and expand_DIVMOD().

◆ expand_doubleword_mod()

static rtx expand_doubleword_mod ( machine_mode mode,
rtx op0,
rtx op1,
bool unsignedp )
static
Subroutine of expand_binop.  Optimize unsigned double-word OP0 % OP1 for
constant OP1.  If for some bit in [BITS_PER_WORD / 2, BITS_PER_WORD] range
(prefer higher bits) ((1w << bit) % OP1) == 1, then the modulo can be
computed in word-mode as ((OP0 & (bit - 1)) + ((OP0 >> bit) & (bit - 1))
+ (OP0 >> (2 * bit))) % OP1.  Whether we need to sum 2, 3 or 4 values
depends on the bit value, if 2, then carry from the addition needs to be
added too, i.e. like:
sum += __builtin_add_overflow (low, high, &sum)

Optimize signed double-word OP0 % OP1 similarly, just apply some correction
factor to the sum before doing unsigned remainder, in the form of
sum += (((signed) OP0 >> (2 * BITS_PER_WORD - 1)) & const);
then perform unsigned
remainder = sum % OP1;
and finally
remainder += ((signed) OP0 >> (2 * BITS_PER_WORD - 1)) & (1 - OP1);   

References BITS_PER_WORD, build_complex_type(), CALL_P, convert_modes(), count, expand_addsub_overflow(), expand_divmod(), expand_simple_binop(), force_lowpart_subreg(), GEN_INT, gen_int_mode(), gen_reg_rtx(), get_insns(), get_last_insn(), GET_MODE_COMPLEX_MODE, HOST_BITS_PER_WIDE_INT, HOST_WIDE_INT_1U, i, immed_wide_int_const(), INTVAL, last, wi::lrshift(), make_tree(), wi::mask(), wi::min_value(), expand_operand::mode, wi::ne_p(), wi::neg_p(), NEXT_INSN(), NULL, NULL_RTX, NULL_TREE, operand_subword_force(), OPTAB_DIRECT, optab_handler(), wi::shifted_mask(), SIGNED, wi::smod_trunc(), lang_hooks_for_types::type_for_mode, TYPE_MODE, lang_hooks::types, wi::umod_trunc(), UNKNOWN_LOCATION, word_mode, and XEXP.

Referenced by expand_binop(), and expand_doubleword_divmod().

◆ expand_doubleword_mult()

static rtx expand_doubleword_mult ( machine_mode mode,
rtx op0,
rtx op1,
rtx target,
bool umulp,
enum optab_methods methods )
static
Subroutine of expand_binop.  Perform a double word multiplication of
 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
 as the target's word_mode.  This function return NULL_RTX if anything
 goes wrong, in which case it may have already emitted instructions
 which need to be deleted.

 If we want to multiply two two-word values and have normal and widening
 multiplies of single-word values, we can do this with three smaller
 multiplications.

 The multiplication proceeds as follows:
                         _______________________
                        [__op0_high_|__op0_low__]
                         _______________________
      *                 [__op1_high_|__op1_low__]
      _______________________________________________
                         _______________________
  (1)                           [__op0_low__*__op1_low__]
             _______________________
  (2a)      [__op0_low__*__op1_high_]
             _______________________
  (2b)      [__op0_high_*__op1_low__]
       _______________________
  (3) [__op0_high_*__op1_high_]


This gives a 4-word result.  Since we are only interested in the
lower 2 words, partial result (3) and the upper words of (2a) and
(2b) don't need to be calculated.  Hence (2a) and (2b) can be
calculated using non-widening multiplication.

(1), however, needs to be calculated with an unsigned widening
multiplication.  If this operation is not directly supported we
try using a signed widening multiplication and adjust the result.
This adjustment works as follows:

    If both operands are positive then no adjustment is needed.

    If the operands have different signs, for example op0_low < 0 and
    op1_low >= 0, the instruction treats the most significant bit of
    op0_low as a sign bit instead of a bit with significance
    2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
    with 2**BITS_PER_WORD - op0_low, and two's complements the
    result.  Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
    the result.

    Similarly, if both operands are negative, we need to add
    (op0_low + op1_low) * 2**BITS_PER_WORD.

    We use a trick to adjust quickly.  We logically shift op0_low right
    (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
    op0_high (op1_high) before it is used to calculate 2b (2a).  If no
    logical shift exists, we do an arithmetic right shift and subtract
    the 0 or -1.   

References BITS_PER_WORD, emit_move_insn(), expand_binop(), force_reg(), gen_int_shift_amount(), GET_MODE, expand_operand::mode, NULL_RTX, operand_subword(), operand_subword_force(), OPTAB_DIRECT, REG_P, expand_operand::target, and word_mode.

Referenced by expand_binop().

◆ expand_doubleword_parity()

static rtx expand_doubleword_parity ( scalar_int_mode mode,
rtx op0,
rtx target )
static
Try calculating
     (parity:wide x)
as
     (parity:narrow (low (x) ^ high (x)))  

References expand_binop(), expand_unop(), expand_operand::mode, NULL_RTX, operand_subword_force(), OPTAB_DIRECT, expand_operand::target, and word_mode.

Referenced by expand_unop().

◆ expand_doubleword_popcount()

static rtx expand_doubleword_popcount ( scalar_int_mode mode,
rtx op0,
rtx target )
static
Try calculating popcount of a double-word quantity as two popcount's of
word-sized quantities and summing up the results.   

References add_equal_note(), emit_insn(), end_sequence(), expand_binop(), expand_unop_direct(), gen_reg_rtx(), get_insns(), expand_operand::mode, NULL_RTX, operand_subword_force(), OPTAB_DIRECT, start_sequence(), expand_operand::target, and word_mode.

Referenced by expand_unop().

◆ expand_doubleword_shift()

static bool expand_doubleword_shift ( scalar_int_mode op1_mode,
optab binoptab,
rtx outof_input,
rtx into_input,
rtx op1,
rtx outof_target,
rtx into_target,
int unsignedp,
enum optab_methods methods,
unsigned HOST_WIDE_INT shift_mask )
static
Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
input operand; the shift moves bits in the direction OUTOF_INPUT->
INTO_TARGET.  OUTOF_TARGET and INTO_TARGET are the equivalent words
of the target.  OP1 is the shift count and OP1_MODE is its mode.
If OP1 is constant, it will have been truncated as appropriate
and is known to be nonzero.

If SHIFT_MASK is zero, the result of word shifts is undefined when the
shift count is outside the range [0, BITS_PER_WORD).  This routine must
avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).

If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
fill with zeros or sign bits as appropriate.

If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
are undefined.

BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop.  This function
may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
OUTOF_INPUT and OUTOF_TARGET.  OUTOF_TARGET can be null if the parent
function wants to calculate it itself.

Return true if the shift could be successfully synthesized.   

References BITS_PER_WORD, cmp1(), CONST0_RTX, const0_rtx, CONST_INT_P, CONSTANT_P, delete_insns_since(), do_compare_rtx_and_jump(), emit_barrier(), emit_jump_insn(), emit_label(), expand_doubleword_shift(), expand_doubleword_shift_condmove(), expand_subword_shift(), expand_superword_shift(), force_expand_binop(), gen_label_rtx(), get_last_insn(), immed_wide_int_const(), NO_DEFER_POP, OK_DEFER_POP, wi::shwi(), simplify_expand_binop(), simplify_relational_operation(), targetm, profile_probability::uninitialized(), and word_mode.

Referenced by expand_binop(), and expand_doubleword_shift().

◆ expand_doubleword_shift_condmove()

static bool expand_doubleword_shift_condmove ( scalar_int_mode op1_mode,
optab binoptab,
enum rtx_code cmp_code,
rtx cmp1,
rtx cmp2,
rtx outof_input,
rtx into_input,
rtx subword_op1,
rtx superword_op1,
rtx outof_target,
rtx into_target,
int unsignedp,
enum optab_methods methods,
unsigned HOST_WIDE_INT shift_mask )
static
Try implementing expand_doubleword_shift using conditional moves.
The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
otherwise it is by >= BITS_PER_WORD.  SUBWORD_OP1 and SUPERWORD_OP1
are the shift counts to use in the former and latter case.  All other
arguments are the same as the parent routine.   

References cmp1(), emit_conditional_move(), expand_subword_shift(), expand_superword_shift(), gen_reg_rtx(), and word_mode.

Referenced by expand_doubleword_shift().

◆ expand_ffs()

static rtx expand_ffs ( scalar_int_mode mode,
rtx op0,
rtx target )
static
Try calculating ffs(x) using ctz(x) if we have that instruction, or
else with the sequence used by expand_clz.

The ffs builtin promises to return zero for a zero value and ctz/clz
may have an undefined value in that case.  If they do not give us a
convenient value, we have to generate a test and branch.   

References add_equal_note(), CLZ_DEFINED_VALUE_AT_ZERO, CONST0_RTX, convert_move(), CTZ_DEFINED_VALUE_AT_ZERO, emit_cmp_and_jump_insns(), emit_insn(), emit_label(), end_sequence(), expand_binop(), expand_ctz(), expand_unop_direct(), GEN_INT, gen_int_mode(), gen_label_rtx(), get_insns(), GET_MODE_PRECISION(), expand_operand::mode, NULL_RTX, OPTAB_DIRECT, optab_handler(), start_sequence(), and expand_operand::target.

Referenced by expand_doubleword_clz_ctz_ffs(), and expand_unop().

◆ expand_fix()

◆ expand_fixed_convert()

void expand_fixed_convert ( rtx to,
rtx from,
int uintp,
int satp )
Generate code to convert FROM or TO a fixed-point.
If UINTP is true, either TO or FROM is an unsigned integer.
If SATP is true, we need to saturate the result.   

References convert_optab_handler(), convert_optab_libfunc(), emit_libcall_block(), emit_library_call_value(), emit_move_insn(), emit_unop_insn(), end_sequence(), gcc_assert, get_insns(), GET_MODE, insns, LCT_CONST, NULL_RTX, prepare_libcall_arg(), start_sequence(), and expand_operand::value.

Referenced by convert_mode_scalar(), and expand_expr_real_2().

◆ expand_float()

◆ expand_insn()

◆ expand_jump_insn()

void expand_jump_insn ( enum insn_code icode,
unsigned int nops,
class expand_operand * ops )
Like expand_insn, but for jumps.   

References gcc_unreachable, and maybe_expand_jump_insn().

Referenced by emit_indirect_jump(), and try_casesi().

◆ expand_mem_signal_fence()

void expand_mem_signal_fence ( enum memmodel model)
Emit a signal fence with given memory model.   

References expand_memory_blockage(), and is_mm_relaxed().

Referenced by expand_builtin_atomic_signal_fence().

◆ expand_mem_thread_fence()

void expand_mem_thread_fence ( enum memmodel model)
This routine will either emit the mem_thread_fence pattern or issue a
sync_synchronize to generate a fence for memory model MEMMODEL.   

References emit_insn(), emit_library_call(), expand_memory_blockage(), GEN_INT, is_mm_relaxed(), LCT_NORMAL, NULL_RTX, synchronize_libfunc, and targetm.

Referenced by expand_atomic_load(), expand_atomic_store(), expand_builtin_atomic_thread_fence(), expand_builtin_sync_synchronize(), and maybe_emit_sync_lock_test_and_set().

◆ expand_memory_blockage()

static void expand_memory_blockage ( void )
static
Do not propagate memory accesses across this point.   

References emit_insn(), expand_asm_memory_blockage(), and targetm.

Referenced by expand_atomic_load(), expand_atomic_store(), expand_mem_signal_fence(), and expand_mem_thread_fence().

◆ expand_mult_highpart()

◆ expand_one_cmpl_abs_nojump()

rtx expand_one_cmpl_abs_nojump ( machine_mode mode,
rtx op0,
rtx target )
Emit code to compute the one's complement absolute value of OP0
(if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
(TARGET may be NULL_RTX.)  The return value says where the result
actually is to be found.

MODE is the mode of the operand; the mode of the result is
different but can be deduced from MODE.   

References delete_insns_since(), expand_binop(), expand_shift(), expand_unop(), FLOAT_MODE_P, get_last_insn(), GET_MODE_PRECISION(), is_int_mode(), last, expand_operand::mode, NULL_RTX, optab_handler(), OPTAB_LIB_WIDEN, OPTAB_WIDEN, optimize_insn_for_speed_p(), and expand_operand::target.

Referenced by noce_try_abs().

◆ expand_parity()

static rtx expand_parity ( scalar_int_mode mode,
rtx op0,
rtx target )
static

◆ expand_sfix_optab()

bool expand_sfix_optab ( rtx to,
rtx from,
convert_optab tab )
Generate code to convert FROM to fixed point and store in TO.  FROM
must be floating point, TO must be signed.  Use the conversion optab
TAB to do the conversion.   

References convert_move(), convert_optab_handler(), convert_to_mode(), delete_insns_since(), FOR_EACH_MODE_FROM, gen_reg_rtx(), get_last_insn(), GET_MODE, insn_optimization_type(), last, maybe_emit_unop_insn(), and expand_operand::target.

Referenced by expand_builtin_int_roundingfn(), and expand_builtin_int_roundingfn_2().

◆ expand_simple_binop()

◆ expand_simple_unop()

rtx expand_simple_unop ( machine_mode mode,
enum rtx_code code,
rtx op0,
rtx target,
int unsignedp )
Wrapper around expand_unop which takes an rtx code to specify
the operation to perform, not an optab pointer.  All other
arguments are the same.   

References expand_unop(), gcc_assert, expand_operand::mode, and expand_operand::target.

Referenced by expand_atomic_fetch_op(), expand_atomic_fetch_op_no_fallback(), expand_builtin_atomic_fetch_op(), expand_ifn_atomic_bit_test_and(), force_operand(), and noce_try_abs().

◆ expand_subword_shift()

static bool expand_subword_shift ( scalar_int_mode op1_mode,
optab binoptab,
rtx outof_input,
rtx into_input,
rtx op1,
rtx outof_target,
rtx into_target,
int unsignedp,
enum optab_methods methods,
unsigned HOST_WIDE_INT shift_mask )
static
This subroutine of expand_doubleword_shift handles the cases in which
the effective shift value is < BITS_PER_WORD.  The arguments and return
value are the same as for the parent routine.   

References BITS_PER_WORD, const0_rtx, const1_rtx, CONSTANT_P, emit_move_insn(), expand_unop(), force_expand_binop(), immed_wide_int_const(), wi::shwi(), simplify_expand_binop(), and word_mode.

Referenced by expand_doubleword_shift(), and expand_doubleword_shift_condmove().

◆ expand_superword_shift()

static bool expand_superword_shift ( optab binoptab,
rtx outof_input,
rtx superword_op1,
rtx outof_target,
rtx into_target,
int unsignedp,
enum optab_methods methods )
static
This subroutine of expand_doubleword_shift handles the cases in which
the effective shift value is >= BITS_PER_WORD.  The arguments and return
value are the same as for the parent routine, except that SUPERWORD_OP1
is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
INTO_TARGET may be null if the caller has decided to calculate it.   

References BITS_PER_WORD, CONST0_RTX, emit_move_insn(), force_expand_binop(), gen_int_shift_amount(), and word_mode.

Referenced by expand_doubleword_shift(), and expand_doubleword_shift_condmove().

◆ expand_sync_lock_test_and_set()

rtx expand_sync_lock_test_and_set ( rtx target,
rtx mem,
rtx val )
This function expands the legacy _sync_lock test_and_set operation which is
generally an atomic exchange.  Some limited targets only allow the
constant 1 to be stored.  This is an ACQUIRE operation.

TARGET is an optional place to stick the return value.
MEM is where VAL is stored.   

References const1_rtx, maybe_emit_atomic_exchange(), maybe_emit_atomic_test_and_set(), maybe_emit_compare_and_swap_exchange_loop(), maybe_emit_sync_lock_test_and_set(), MEMMODEL_SYNC_ACQUIRE, and expand_operand::target.

Referenced by expand_builtin_sync_lock_test_and_set().

◆ expand_ternary_op()

rtx expand_ternary_op ( machine_mode mode,
optab ternary_optab,
rtx op0,
rtx op1,
rtx op2,
rtx target,
int unsignedp )
Generate code to perform an operation specified by TERNARY_OPTAB
on operands OP0, OP1 and OP2, with result having machine-mode MODE.

UNSIGNEDP is for the case where we have to widen the operands
to perform the operation.  It says to use zero-extension.

If TARGET is nonzero, the value
is generated there, if it is convenient to do so.
In all cases an rtx is returned for the locus of the value;
this may or may not be TARGET.   

References create_convert_operand_from(), create_output_operand(), expand_insn(), gcc_assert, expand_operand::mode, optab_handler(), expand_operand::target, and expand_operand::value.

Referenced by expand_builtin_mathfn_ternary(), and expand_expr_real_2().

◆ expand_twoval_binop()

bool expand_twoval_binop ( optab binoptab,
rtx op0,
rtx op1,
rtx targ0,
rtx targ1,
int unsignedp )
Generate code to perform an operation specified by BINOPTAB
on operands OP0 and OP1, with two results to TARG1 and TARG2.
We assume that the order of the operands for the instruction
is TARG0, OP0, OP1, TARG1, which would fit a pattern like
[(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].

Either TARG0 or TARG1 may be zero, but what that means is that
the result is not actually wanted.  We will generate it into
a dummy pseudo-reg and discard it.  They may not both be zero.

Returns true if this operation can be performed; false if not.   

References avoid_expensive_constant(), CLASS_HAS_WIDER_MODES_P, convert_modes(), convert_move(), create_convert_operand_from(), create_fixed_operand(), delete_insns_since(), expand_twoval_binop(), FOR_EACH_WIDER_MODE, gen_reg_rtx(), get_last_insn(), GET_MODE, GET_MODE_CLASS, insn_data, last, maybe_expand_insn(), expand_operand::mode, insn_operand_data::mode, insn_data_d::operand, and optab_handler().

Referenced by expand_DIVMOD(), expand_divmod(), and expand_twoval_binop().

◆ expand_twoval_binop_libfunc()

bool expand_twoval_binop_libfunc ( optab binoptab,
rtx op0,
rtx op1,
rtx targ0,
rtx targ1,
enum rtx_code code )
Expand the two-valued library call indicated by BINOPTAB, but
preserve only one of the values.  If TARG0 is non-NULL, the first
value is placed into TARG0; otherwise the second value is placed
into TARG1.  Exactly one of TARG0 and TARG1 must be non-NULL.  The
value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
This routine assumes that the value returned by the library call is
as if the return value was of an integral mode twice as wide as the
mode of OP0.  Returns 1 if the call was successful.   

References emit_libcall_block(), emit_library_call_value(), end_sequence(), gcc_assert, get_insns(), GET_MODE, GET_MODE_BITSIZE(), GET_MODE_SIZE(), insns, LCT_CONST, expand_operand::mode, NULL_RTX, optab_libfunc(), simplify_gen_subreg(), smallest_int_mode_for_size(), and start_sequence().

Referenced by expand_divmod().

◆ expand_twoval_unop()

bool expand_twoval_unop ( optab unoptab,
rtx op0,
rtx targ0,
rtx targ1,
int unsignedp )
Generate code to perform an operation specified by UNOPPTAB
on operand OP0, with two results to TARG0 and TARG1.
We assume that the order of the operands for the instruction
is TARG0, TARG1, OP0.

Either TARG0 or TARG1 may be zero, but what that means is that
the result is not actually wanted.  We will generate it into
a dummy pseudo-reg and discard it.  They may not both be zero.

Returns true if this operation can be performed; false if not.   

References CLASS_HAS_WIDER_MODES_P, convert_modes(), convert_move(), create_convert_operand_from(), create_fixed_operand(), delete_insns_since(), expand_twoval_unop(), FOR_EACH_WIDER_MODE, gen_reg_rtx(), get_last_insn(), GET_MODE, GET_MODE_CLASS, last, maybe_expand_insn(), expand_operand::mode, and optab_handler().

Referenced by expand_builtin_cexpi(), expand_builtin_mathfn_3(), expand_builtin_sincos(), and expand_twoval_unop().

◆ expand_unop()

rtx expand_unop ( machine_mode mode,
optab unoptab,
rtx op0,
rtx target,
int unsignedp )
Generate code to perform an operation specified by UNOPTAB
on operand OP0, with result having machine-mode MODE.

UNSIGNEDP is for the case where we have to widen the operands
to perform the operation.  It says to use zero-extension.

If TARGET is nonzero, the value
is generated there, if it is convenient to do so.
In all cases an rtx is returned for the locus of the value;
this may or may not be TARGET.   

References as_a(), BITS_PER_WORD, CLASS_HAS_WIDER_MODES_P, CONST0_RTX, CONSTM1_RTX, convert_move(), delete_insns_since(), emit_insn(), emit_libcall_block_1(), emit_library_call_value(), emit_move_insn(), end_sequence(), expand_absneg_bit(), expand_binop(), expand_clrsb_using_clz(), expand_ctz(), expand_doubleword_bswap(), expand_doubleword_clz_ctz_ffs(), expand_doubleword_parity(), expand_doubleword_popcount(), expand_ffs(), expand_parity(), expand_shift(), expand_unop(), expand_unop_direct(), FOR_EACH_WIDER_MODE, gcc_assert, gen_int_mode(), gen_int_shift_amount(), gen_lowpart, gen_reg_rtx(), get_insns(), get_last_insn(), GET_MODE, GET_MODE_BITSIZE(), GET_MODE_CLASS, GET_MODE_PRECISION(), GET_MODE_SIZE(), GET_MODE_UNIT_SIZE, hard_libcall_value(), HONOR_SIGNED_ZEROS(), i, insns, integer_type_node, is_a(), is_int_mode(), last, LCT_CONST, expand_operand::mode, NULL_RTX, operand_subword(), operand_subword_force(), OPTAB_DIRECT, optab_handler(), OPTAB_LIB_WIDEN, optab_libfunc(), OPTAB_WIDEN, optimize_insn_for_speed_p(), reg_overlap_mentioned_p(), SCALAR_INT_MODE_P, simplify_gen_unary(), start_sequence(), expand_operand::target, trapv_unoptab_p(), TRULY_NOOP_TRUNCATION_MODES_P, TYPE_MODE, valid_multiword_target_p(), expand_operand::value, widen_bswap(), widen_leading(), widen_operand(), and word_mode.

Referenced by emit_cstore(), emit_store_flag_1(), emit_store_flag_int(), expand_abs(), expand_abs_nojump(), expand_addsub_overflow(), expand_builtin_bswap(), expand_builtin_issignaling(), expand_builtin_mathfn_3(), expand_builtin_unop(), expand_copysign_absneg(), expand_divmod(), expand_doubleword_bswap(), expand_doubleword_parity(), expand_expr_real_2(), expand_fix(), expand_mul_overflow(), expand_mult(), expand_mult_const(), expand_neg_overflow(), expand_one_cmpl_abs_nojump(), expand_parity(), expand_shift_1(), expand_simple_unop(), expand_subword_shift(), expand_unop(), expand_unop_direct(), flip_storage_order(), negate_rtx(), noce_emit_move_insn(), widen_bswap(), and widen_leading().

◆ expand_unop_direct()

static rtx expand_unop_direct ( machine_mode mode,
optab unoptab,
rtx op0,
rtx target,
int unsignedp )
static

◆ expand_vec_cmp_expr()

◆ expand_vec_perm_1()

static rtx expand_vec_perm_1 ( enum insn_code icode,
rtx target,
rtx v0,
rtx v1,
rtx sel )
static

◆ expand_vec_perm_const()

rtx expand_vec_perm_const ( machine_mode mode,
rtx v0,
rtx v1,
const vec_perm_builder & sel,
machine_mode sel_mode,
rtx target )

◆ expand_vec_perm_var()

rtx expand_vec_perm_var ( machine_mode mode,
rtx v0,
rtx v1,
rtx sel,
rtx target )
Implement a permutation of vectors v0 and v1 using the permutation
vector in SEL and return the result.  Use TARGET to hold the result
if nonnull and convenient.

MODE is the mode of the vectors being permuted (V0 and V1).
SEL must have the integer equivalent of MODE and is known to be
unsuitable for permutes with a constant permutation vector.   

References rtx_vector_builder::build(), direct_optab_handler(), exact_log2(), expand_simple_binop(), expand_vec_perm_1(), expand_vec_perm_const(), gcc_assert, GEN_INT, gen_int_shift_amount(), gen_lowpart, gen_reg_rtx(), GET_MODE, GET_MODE_MASK, GET_MODE_NUNITS(), GET_MODE_SIZE(), GET_MODE_UNIT_SIZE, i, maybe_gt, expand_operand::mode, NULL, NULL_RTX, OPTAB_DIRECT, qimode_for_vec_perm(), and expand_operand::target.

Referenced by expand_expr_real_2().

◆ expand_vec_series_expr()

rtx expand_vec_series_expr ( machine_mode vmode,
rtx op0,
rtx op1,
rtx target )
Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
Use TARGET for the result if nonnull and convenient.   

References create_input_operand(), create_output_operand(), direct_optab_handler(), expand_insn(), gcc_assert, GET_MODE_INNER, expand_operand::target, and expand_operand::value.

Referenced by expand_expr_real_2().

◆ expand_vector_broadcast()

rtx expand_vector_broadcast ( machine_mode vmode,
rtx op )
Create a new vector value in VMODE with all elements set to OP.  The
mode of OP must be the element mode of VMODE.  If OP is a constant,
then the return value will be a constant.   

References convert_optab_handler(), create_input_operand(), create_output_operand(), emit_insn(), expand_insn(), gcc_checking_assert, gen_const_vec_duplicate(), gen_reg_rtx(), GET_MODE, GET_MODE_INNER, GET_MODE_NUNITS(), i, NULL, NULL_RTX, optab_handler(), rtvec_alloc(), RTVEC_ELT, valid_for_const_vector_p(), expand_operand::value, and VECTOR_MODE_P.

Referenced by expand_binop(), expand_expr_real_2(), and maybe_legitimize_operand().

◆ expand_widen_pattern_expr()

rtx expand_widen_pattern_expr ( const_sepops ops,
rtx op0,
rtx op1,
rtx wide_op,
rtx target,
int unsignedp )
Expand vector widening operations.

There are two different classes of operations handled here:
1) Operations whose result is wider than all the arguments to the operation.
   Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
   In this case OP0 and optionally OP1 would be initialized,
   but WIDE_OP wouldn't (not relevant for this case).
2) Operations whose result is of the same size as the last argument to the
   operation, but wider than all the other arguments to the operation.
   Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
   In the case WIDE_OP, OP0 and optionally OP1 would be initialized.

E.g, when called to expand the following operations, this is how
the arguments will be initialized:
                             nops    OP0     OP1     WIDE_OP
widening-sum                 2       oprnd0  -       oprnd1
widening-dot-product         3       oprnd0  oprnd1  oprnd2
widening-mult                2       oprnd0  oprnd1  -
type-promotion (vec-unpack)  1       oprnd0  -       -   

References separate_ops::code, create_convert_operand_from(), create_output_operand(), expand_insn(), find_widening_optab_handler, gcc_assert, gcc_unreachable, GEN_INT, NULL_TREE, separate_ops::op0, separate_ops::op1, separate_ops::op2, optab_default, optab_for_tree_code(), optab_handler(), optab_vector_mixed_sign, SCALAR_INT_MODE_P, SIGNED, expand_operand::target, TREE_CODE_LENGTH, TREE_TYPE, separate_ops::type, TYPE_MODE, TYPE_SIGN, TYPE_VECTOR_SUBPARTS(), UNSIGNED, expand_operand::value, and VECTOR_BOOLEAN_TYPE_P.

Referenced by expand_expr_real_2().

◆ find_cc_set()

static void find_cc_set ( rtx x,
const_rtx pat,
void * data )
static
Helper function to find the MODE_CC set in a sync_compare_and_swap
pattern.   

References gcc_assert, GET_CODE, GET_MODE, GET_MODE_CLASS, REG_P, and SET.

Referenced by expand_atomic_compare_and_swap().

◆ force_expand_binop()

bool force_expand_binop ( machine_mode mode,
optab binoptab,
rtx op0,
rtx op1,
rtx target,
int unsignedp,
enum optab_methods methods )
Like simplify_expand_binop, but always put the result in TARGET.
Return true if the expansion succeeded.   

References emit_move_insn(), expand_operand::mode, simplify_expand_binop(), and expand_operand::target.

Referenced by expand_doubleword_shift(), expand_sjlj_dispatch_table(), expand_subword_shift(), expand_superword_shift(), and shift_return_value().

◆ gen_add2_insn()

rtx_insn * gen_add2_insn ( rtx x,
rtx y )
These functions attempt to generate an insn body, rather than
emitting the insn, but if the gen function already emits them, we
make no attempt to turn them back into naked patterns.   
Generate and return an insn body to add Y to X.   

References gcc_assert, GET_MODE, insn_operand_matches(), optab_handler(), and y.

Referenced by emit_add2_insn(), address_reload_context::emit_autoinc(), gen_reload(), inc_for_reload(), and pieces_addr::increment_address().

◆ gen_add3_insn()

rtx_insn * gen_add3_insn ( rtx r0,
rtx r1,
rtx c )
Generate and return an insn body to add r1 and c,
storing the result in r0.   

References GET_MODE, insn_operand_matches(), NULL, and optab_handler().

Referenced by emit_inc_dec_insn_before().

◆ gen_addptr3_insn()

rtx_insn * gen_addptr3_insn ( rtx x,
rtx y,
rtx z )
Generate and return an insn body to add Y to X.   

References gcc_assert, GET_MODE, insn_operand_matches(), optab_handler(), and y.

Referenced by emit_add3_insn().

◆ gen_cond_trap()

rtx_insn * gen_cond_trap ( enum rtx_code code,
rtx op1,
rtx op2,
rtx tcode )
Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
CODE.  Return 0 on failure.   

References do_pending_stack_adjust(), emit_insn(), end_sequence(), get_insns(), GET_MODE, insn_operand_matches(), expand_operand::mode, NULL, NULL_RTX, OPTAB_DIRECT, optab_handler(), prepare_cmp_insn(), start_sequence(), and XEXP.

Referenced by find_cond_trap().

◆ gen_extend_insn()

rtx_insn * gen_extend_insn ( rtx x,
rtx y,
machine_mode mto,
machine_mode mfrom,
int unsignedp )
Generate the body of an insn to extend Y (with mode MFROM)
into X (with mode MTO).  Do zero-extension if UNSIGNEDP is nonzero.   

References can_extend_p(), and y.

Referenced by assign_parm_setup_reg().

◆ gen_sub2_insn()

rtx_insn * gen_sub2_insn ( rtx x,
rtx y )
Generate and return an insn body to subtract Y from X.   

References gcc_assert, GET_MODE, insn_operand_matches(), optab_handler(), and y.

Referenced by address_reload_context::emit_autoinc(), and inc_for_reload().

◆ gen_sub3_insn()

rtx_insn * gen_sub3_insn ( rtx r0,
rtx r1,
rtx c )
Generate and return an insn body to subtract r1 and c,
storing the result in r0.   

References GET_MODE, insn_operand_matches(), NULL, and optab_handler().

◆ get_atomic_op_for_code()

◆ get_rtx_code()

enum rtx_code get_rtx_code ( enum tree_code tcode,
bool unsignedp )
Return rtx code for TCODE.  Use UNSIGNEDP to select signed
or unsigned operation code.   

References gcc_assert, and get_rtx_code_1().

Referenced by expand_ccmp_next(), get_compare_parts(), and vector_compare_rtx().

◆ get_rtx_code_1()

enum rtx_code get_rtx_code_1 ( enum tree_code tcode,
bool unsignedp )
Return rtx code for TCODE or UNKNOWN.  Use UNSIGNEDP to select signed
or unsigned operation code.   

Referenced by get_rtx_code(), vcond_icode_p(), and vec_cmp_icode_p().

◆ have_add2_insn()

bool have_add2_insn ( rtx x,
rtx y )

◆ have_addptr3_insn()

bool have_addptr3_insn ( rtx x,
rtx y,
rtx z )
Return true if the target implements an addptr pattern and X, Y,
and Z are valid for the pattern predicates.   

References gcc_assert, GET_MODE, insn_operand_matches(), optab_handler(), and y.

Referenced by eliminate_regs_in_insn(), and emit_add3_insn().

◆ have_insn_for()

◆ have_sub2_insn()

bool have_sub2_insn ( rtx x,
rtx y )

◆ insn_operand_matches()

◆ insn_predicate_matches_p()

static bool insn_predicate_matches_p ( enum insn_code icode,
unsigned int opno,
enum rtx_code code,
machine_mode mask_mode,
machine_mode value_mode )
static
Return whether the backend-emitted comparison for code CODE, comparing
operands of mode VALUE_MODE and producing a result with MASK_MODE, matches
operand OPNO of pattern ICODE.   

References alloca_raw_REG, insn_operand_matches(), and LAST_VIRTUAL_REGISTER.

Referenced by can_vcond_compare_p(), and can_vec_cmp_compare_p().

◆ maybe_emit_atomic_exchange()

static rtx maybe_emit_atomic_exchange ( rtx target,
rtx mem,
rtx val,
enum memmodel model )
static
This function tries to emit an atomic_exchange intruction.  VAL is written
to *MEM using memory model MODEL. The previous contents of *MEM are returned,
using TARGET if possible.   

References create_fixed_operand(), create_input_operand(), create_integer_operand(), create_output_operand(), direct_optab_handler(), GET_MODE, maybe_expand_insn(), expand_operand::mode, NULL_RTX, expand_operand::target, and expand_operand::value.

Referenced by expand_atomic_exchange(), expand_atomic_store(), expand_atomic_test_and_set(), expand_sync_lock_test_and_set(), and maybe_optimize_fetch_op().

◆ maybe_emit_atomic_test_and_set()

static rtx maybe_emit_atomic_test_and_set ( rtx target,
rtx mem,
enum memmodel model )
static
This function tries to implement an atomic test-and-set operation
using the atomic_test_and_set instruction pattern.  A boolean value
is returned from the operation, using TARGET if possible.   

References adjust_address_nv, create_fixed_operand(), create_integer_operand(), create_output_operand(), gcc_checking_assert, GET_MODE, insn_data, maybe_expand_insn(), expand_operand::mode, insn_operand_data::mode, NULL_RTX, insn_data_d::operand, expand_operand::target, targetm, and expand_operand::value.

Referenced by expand_atomic_test_and_set(), and expand_sync_lock_test_and_set().

◆ maybe_emit_compare_and_swap_exchange_loop()

static rtx maybe_emit_compare_and_swap_exchange_loop ( rtx target,
rtx mem,
rtx val )
static
This function tries to implement an atomic exchange operation using a
compare_and_swap loop. VAL is written to *MEM.  The previous contents of
*MEM are returned, using TARGET if possible.  No memory model is required
since a compare_and_swap loop is seq-cst.   

References can_compare_and_swap_p(), expand_compare_and_swap_loop(), gen_reg_rtx(), GET_MODE, expand_operand::mode, NULL_RTX, register_operand(), and expand_operand::target.

Referenced by expand_atomic_exchange(), expand_atomic_store(), expand_atomic_test_and_set(), and expand_sync_lock_test_and_set().

◆ maybe_emit_op()

static rtx maybe_emit_op ( const struct atomic_op_functions * optab,
rtx target,
rtx mem,
rtx val,
bool use_memmodel,
enum memmodel model,
bool after )
static
Try to emit an instruction for a specific operation varaition.
OPTAB contains the OP functions.
TARGET is an optional place to return the result. const0_rtx means unused.
MEM is the memory location to operate on.
VAL is the value to use in the operation.
USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
MODEL is the memory model, if used.
AFTER is true if the returned result is the value after the operation.   

References const0_rtx, create_convert_operand_to(), create_fixed_operand(), create_integer_operand(), create_output_operand(), direct_optab_handler(), GET_MODE, maybe_expand_insn(), expand_operand::mode, NULL_RTX, optab_handler(), expand_operand::target, and expand_operand::value.

Referenced by expand_atomic_fetch_op_no_fallback().

◆ maybe_emit_sync_lock_test_and_set()

static rtx maybe_emit_sync_lock_test_and_set ( rtx target,
rtx mem,
rtx val,
enum memmodel model )
static
This function tries to implement an atomic exchange operation using
__sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
The previous contents of *MEM are returned, using TARGET if possible.
Since this instructionn is an acquire barrier only, stronger memory
models may require additional barriers to be emitted.   

References can_compare_and_swap_p(), convert_memory_address, create_fixed_operand(), create_input_operand(), create_output_operand(), delete_insns_since(), emit_library_call_value(), expand_mem_thread_fence(), get_last_insn(), GET_MODE, is_mm_acq_rel(), is_mm_release(), is_mm_seq_cst(), LCT_NORMAL, maybe_expand_insn(), expand_operand::mode, NULL, NULL_RTX, optab_handler(), optab_libfunc(), ptr_mode, expand_operand::target, expand_operand::value, and XEXP.

Referenced by expand_atomic_test_and_set(), and expand_sync_lock_test_and_set().

◆ maybe_emit_unop_insn()

bool maybe_emit_unop_insn ( enum insn_code icode,
rtx target,
rtx op0,
enum rtx_code code )
Generate an instruction whose insn-code is INSN_CODE,
with two operands: an output TARGET and an input OP0.
TARGET *must* be nonzero, and the output is always stored there.
CODE is an rtx code such that (CODE OP0) is an rtx that describes
the value that is stored into TARGET.

Return false if expansion failed.   

References add_equal_note(), create_input_operand(), create_output_operand(), emit_insn(), emit_move_insn(), GET_MODE, INSN_P, maybe_gen_insn(), NEXT_INSN(), NULL_RTX, expand_operand::target, and expand_operand::value.

Referenced by emit_unop_insn(), expand_builtin_interclass_mathfn(), expand_builtin_issignaling(), expand_builtin_signbit(), expand_fix(), and expand_sfix_optab().

◆ maybe_expand_insn()

◆ maybe_expand_jump_insn()

bool maybe_expand_jump_insn ( enum insn_code icode,
unsigned int nops,
class expand_operand * ops )
Like maybe_expand_insn, but for jumps.   

References emit_jump_insn(), and maybe_gen_insn().

Referenced by expand_jump_insn().

◆ maybe_gen_insn()

rtx_insn * maybe_gen_insn ( enum insn_code icode,
unsigned int nops,
class expand_operand * ops )
Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
as its operands.  Return the instruction pattern on success,
and emit any necessary set-up code.  Return null and emit no
code on failure.   

References gcc_assert, gcc_unreachable, insn_data, maybe_legitimize_operands(), NULL, and expand_operand::value.

Referenced by expand_binop_directly(), expand_unop_direct(), maybe_emit_unop_insn(), maybe_expand_insn(), and maybe_expand_jump_insn().

◆ maybe_legitimize_operand()

◆ maybe_legitimize_operand_same_code()

static bool maybe_legitimize_operand_same_code ( enum insn_code icode,
unsigned int opno,
class expand_operand * op )
static

◆ maybe_legitimize_operands()

bool maybe_legitimize_operands ( enum insn_code icode,
unsigned int opno,
unsigned int nops,
class expand_operand * ops )
Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
of instruction ICODE.  Return true on success, leaving the new operand
values in the OPS themselves.  Emit no code on failure.   

References can_reuse_operands_p(), copy_rtx(), delete_insns_since(), get_last_insn(), i, insn_operand_matches(), last, maybe_legitimize_operand(), rtx_equal_p(), and expand_operand::value.

Referenced by emit_stack_probe(), expand_builtin_interclass_mathfn(), maybe_gen_insn(), and vector_compare_rtx().

◆ maybe_optimize_fetch_op()

static rtx maybe_optimize_fetch_op ( rtx target,
rtx mem,
rtx val,
enum rtx_code code,
enum memmodel model,
bool after )
static
See if there is a more optimal way to implement the operation "*MEM CODE VAL"
using memory order MODEL.  If AFTER is true the operation needs to return
the value of *MEM after the operation, otherwise the previous value.
TARGET is an optional place to place the result.  The result is unused if
it is const0_rtx.
Return the result if there is a better sequence, otherwise NULL_RTX.   

References const0_rtx, constm1_rtx, gen_reg_rtx(), GET_MODE, maybe_emit_atomic_exchange(), and NULL_RTX.

Referenced by expand_atomic_fetch_op_no_fallback().

◆ no_conflict_move_test()

static void no_conflict_move_test ( rtx dest,
const_rtx set,
void * p0 )
static
Called via note_stores by emit_libcall_block.  Set P->must_stay if
the currently examined clobber / store has to stay in the list of
insns that constitute the actual libcall block.   

References CALL_P, find_reg_fusage(), no_conflict_data::first, GET_CODE, no_conflict_data::insn, modified_between_p(), modified_in_p(), no_conflict_data::must_stay, PATTERN(), reg_overlap_mentioned_p(), reg_used_between_p(), SET, SET_DEST, SET_SRC, and no_conflict_data::target.

Referenced by emit_libcall_block_1().

◆ prepare_cmp_insn()

static void prepare_cmp_insn ( rtx x,
rtx y,
enum rtx_code comparison,
rtx size,
int unsignedp,
enum optab_methods methods,
rtx * ptest,
machine_mode * pmode )
static
This function is called when we are going to emit a compare instruction that
compares the values found in X and Y, using the rtl operator COMPARISON.

If they have mode BLKmode, then SIZE specifies the size of both operands.

UNSIGNEDP nonzero says that the operands are unsigned;
this matters if they need to be widened (as given by METHODS).

*PTEST is where the resulting comparison RTX is returned or NULL_RTX
if we failed to produce one.

*PMODE is the mode of the inputs (in case they are const_int).

This function performs all the setup necessary so that the caller only has
to emit a single comparison insn.  This setup can involve doing a BLKmode
comparison or emitting a library call to perform the comparison if no insn
is available to handle it.
The values which are passed in through pointers can be modified; the caller
should perform the comparison on the modified values.  Constant
comparisons must have already been folded.   

References ALL_FIXED_POINT_MODE_P, as_a(), can_create_pseudo_p, canonicalize_comparison(), cfun, const0_rtx, const1_rtx, CONST_INT_P, CONST_SCALAR_INT_P, CONSTANT_P, convert_to_mode(), copy_to_reg(), COSTS_N_INSNS, delete_insns_since(), direct_optab_handler(), emit_block_comp_via_libcall(), emit_insn(), emit_library_call_value(), FOR_EACH_MODE_IN_CLASS, FOR_EACH_WIDER_MODE_FROM, force_reg(), gcc_assert, GEN_INT, gen_reg_rtx(), get_last_insn(), GET_MODE, GET_MODE_BITSIZE(), GET_MODE_CLASS, GET_MODE_MASK, insn_data, insn_operand_matches(), integer_type_node, last, LCT_CONST, may_trap_p(), MEM_ALIGN, MIN, insn_operand_data::mode, NULL_RTX, insn_data_d::operand, OPTAB_DIRECT, optab_handler(), OPTAB_LIB, OPTAB_LIB_WIDEN, optab_libfunc(), OPTAB_WIDEN, optimize_insn_for_speed_p(), plus_constant(), prepare_cmp_insn(), prepare_float_lib_cmp(), prepare_operand(), opt_mode< T >::require(), rtx_cost(), rtx_equal_p(), SCALAR_FLOAT_MODE_P, TARGET_LIB_INT_CMP_BIASED, targetm, TYPE_MODE, UINTVAL, XEXP, and y.

Referenced by emit_cmp_and_jump_insns(), emit_conditional_add(), emit_conditional_move(), gen_cond_trap(), and prepare_cmp_insn().

◆ prepare_float_lib_cmp()

static void prepare_float_lib_cmp ( rtx x,
rtx y,
enum rtx_code comparison,
rtx * ptest,
machine_mode * pmode )
static
Expand the basic unary and binary arithmetic operations, for GNU compiler.
   Copyright (C) 1987-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.   
Include insn-config.h before expr.h so that HAVE_conditional_move
is properly defined.   
Emit a library call comparison between floating point X and Y.
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).   

References const0_rtx, const1_rtx, const_true_rtx, constm1_rtx, convert_to_mode(), emit_libcall_block(), emit_library_call_value(), end_sequence(), false_rtx, FLOAT_LIB_COMPARE_RETURNS_BOOL, FOR_EACH_WIDER_MODE_FROM, gcc_assert, gcc_unreachable, gen_reg_rtx(), get_insns(), GET_MODE, insns, LCT_CONST, NULL_RTX, optab_libfunc(), reverse_condition_maybe_unordered(), simplify_gen_relational(), simplify_gen_ternary(), start_sequence(), swap_condition(), targetm, true_rtx, and y.

Referenced by prepare_cmp_insn().

◆ prepare_libcall_arg()

static rtx prepare_libcall_arg ( rtx arg,
int uintp )
static
Promote integer arguments for a libcall if necessary.
emit_library_call_value cannot do the promotion because it does not
know if it should do a signed or unsigned promotion.  This is because
there are no tree types defined for libcalls.   

References convert_to_mode(), GET_MODE, is_a(), expand_operand::mode, NULL_TREE, promote_function_mode(), and expand_operand::unsigned_p.

Referenced by expand_fixed_convert().

◆ prepare_operand()

rtx prepare_operand ( enum insn_code icode,
rtx x,
int opnum,
machine_mode mode,
machine_mode wider_mode,
int unsignedp )
Before emitting an insn with code ICODE, make sure that X, which is going
to be used for operand OPNUM of the insn, is converted from mode MODE to
WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
that it is accepted by the operand predicate.  Return the new value.   

References convert_modes(), copy_to_mode_reg(), GET_MODE, insn_data, insn_operand_matches(), NULL_RTX, and reload_completed.

Referenced by emit_cstore(), and prepare_cmp_insn().

◆ shift_amt_for_vec_perm_mask()

static rtx shift_amt_for_vec_perm_mask ( machine_mode mode,
const vec_perm_indices & sel,
optab shift_optab )
static
Check if vec_perm mask SEL is a constant equivalent to a shift of
the first vec_perm operand, assuming the second operand (for left shift
first operand) is a constant vector of zeros.  Return the shift distance
in bits if so, or NULL_RTX if the vec_perm is not a shift.  MODE is the
mode of the value being shifted.  SHIFT_OPTAB is vec_shr_optab for right
shift or vec_shl_optab for left shift.   

References gen_int_shift_amount(), GET_MODE_NUNITS(), GET_MODE_UNIT_BITSIZE, i, known_eq, maybe_ge, expand_operand::mode, NULL_RTX, and vec_perm_indices::series_p().

Referenced by expand_vec_perm_const().

◆ shift_optab_p()

static bool shift_optab_p ( optab binoptab)
static
Return true if BINOPTAB implements a shift operation.   

Referenced by expand_binop(), and expand_binop_directly().

◆ sign_expand_binop()

rtx sign_expand_binop ( machine_mode mode,
optab uoptab,
optab soptab,
rtx op0,
rtx op1,
rtx target,
int unsignedp,
enum optab_methods methods )
Expand a binary operator which has both signed and unsigned forms.
UOPTAB is the optab for unsigned operations, and SOPTAB is for
signed operations.

If we widen unsigned operands, we may use a signed wider operation instead
of an unsigned wider operation, since the result would be the same.   

References expand_binop(), expand_operand::mode, OPTAB_DIRECT, OPTAB_LIB, OPTAB_WIDEN, and expand_operand::target.

Referenced by expand_divmod().

◆ simplify_expand_binop()

rtx simplify_expand_binop ( machine_mode mode,
optab binoptab,
rtx op0,
rtx op1,
rtx target,
int unsignedp,
enum optab_methods methods )
Like expand_binop, but return a constant rtx if the result can be
calculated at compile time.  The arguments and return value are
otherwise the same as for expand_binop.   

References CONSTANT_P, expand_binop(), expand_operand::mode, simplify_binary_operation(), and expand_operand::target.

Referenced by expand_doubleword_shift(), expand_subword_shift(), and force_expand_binop().

◆ swap_commutative_operands_with_target()

static bool swap_commutative_operands_with_target ( rtx target,
rtx op0,
rtx op1 )
static
Return whether OP0 and OP1 should be swapped when expanding a commutative
binop.  Order them according to commutative_operand_precedence and, if
possible, try to put TARGET or a pseudo first.   

References commutative_operand_precedence(), REG_P, rtx_equal_p(), and expand_operand::target.

Referenced by expand_binop(), and expand_binop_directly().

◆ unsigned_optab_p()

static bool unsigned_optab_p ( enum rtx_code code)
static
Return whether RTL code CODE corresponds to an unsigned optab.   

Referenced by can_vcond_compare_p(), and can_vec_cmp_compare_p().

◆ valid_multiword_target_p()

bool valid_multiword_target_p ( rtx target)
TARGET is a target of a multiword operation that we are going to
implement as a series of word-mode operations.  Return true if
TARGET is suitable for this purpose.   

References GET_MODE, GET_MODE_SIZE(), i, validate_subreg(), and word_mode.

Referenced by expand_absneg_bit(), expand_binop(), expand_copysign_bit(), expand_doubleword_bswap(), expand_unop(), and extract_integral_bit_field().

◆ validate_test_and_branch()

static enum insn_code validate_test_and_branch ( tree val,
rtx * ptest,
machine_mode * pmode,
optab * res )
static
PTEST points to a comparison that compares its first operand with zero.
Check to see if it can be performed as a bit-test-and-branch instead.
On success, return the instruction that performs the bit-test-and-branch
and replace the second operand of *PTEST with the bit number to test.
On failure, return CODE_FOR_nothing and leave *PTEST unchanged.

Note that the comparison described by *PTEST should not be taken
literally after a successful return.  *PTEST is just a convenient
place to store the two operands of the bit-and-test.

VAL must contain the original tree expression for the first operand
of *PTEST.   

References direct_optab_handler(), wi::exact_log2(), gen_int_mode(), GET_CODE, GET_MODE_BITSIZE(), get_nonzero_bits(), TREE_CODE, TREE_TYPE, tree_zero_one_valued_p(), TYPE_MODE, and XEXP.

Referenced by emit_cmp_and_jump_insns().

◆ vector_compare_rtx()

rtx vector_compare_rtx ( machine_mode cmp_mode,
enum tree_code tcode,
tree t_op0,
tree t_op1,
bool unsignedp,
enum insn_code icode,
unsigned int opno )
Return a comparison rtx of mode CMP_MODE for COND.  Use UNSIGNEDP to
select signed or unsigned operators.  OPNO holds the index of the
first comparison operand for insn ICODE.  Do not generate the
compare instruction itself.   

References create_input_operand(), expand_expr(), EXPAND_STACK_PARM, gcc_assert, gcc_unreachable, GET_MODE, get_rtx_code(), maybe_legitimize_operands(), NULL_RTX, tcc_comparison, TREE_CODE_CLASS, TREE_TYPE, TYPE_MODE, and expand_operand::value.

Referenced by expand_vec_cmp_expr(), and expand_vec_cond_optab_fn().

◆ widen_bswap()

◆ widen_leading()

static rtx widen_leading ( scalar_int_mode mode,
rtx op0,
rtx target,
optab unoptab )
static
Try calculating
     (clz:narrow x)
as
     (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).

A similar operation can be used for clrsb.  UNOPTAB says which operation
we are trying to expand.   

References delete_insns_since(), expand_binop(), expand_unop(), FOR_EACH_WIDER_MODE, gen_int_mode(), gen_reg_rtx(), get_last_insn(), GET_MODE_PRECISION(), last, expand_operand::mode, NULL_RTX, OPTAB_DIRECT, optab_handler(), opt_mode< T >::require(), expand_operand::target, and widen_operand().

Referenced by expand_unop().

◆ widen_operand()

static rtx widen_operand ( rtx op,
machine_mode mode,
machine_mode oldmode,
int unsignedp,
bool no_extend )
static
Widen OP to MODE and return the rtx for the widened operand.  UNSIGNEDP
says whether OP is signed or unsigned.  NO_EXTEND is true if we need
not actually do a sign-extend or zero-extend, but can leave the
higher-order bits of the result rtx undefined, for example, in the case
of logical operations, but not right shifts.   

References convert_modes(), emit_clobber(), emit_move_insn(), force_reg(), gen_lowpart, gen_reg_rtx(), GET_CODE, GET_MODE, GET_MODE_SIZE(), is_a(), SUBREG_CHECK_PROMOTED_SIGN, and SUBREG_PROMOTED_VAR_P.

Referenced by expand_binop(), expand_parity(), expand_unop(), widen_bswap(), and widen_leading().

◆ widened_mode()

static machine_mode widened_mode ( machine_mode to_mode,
rtx op0,
rtx op1 )
static
Given two input operands, OP0 and OP1, determine what the correct from_mode
for a widening operation would be.  In most cases this would be OP0, but if
that's a constant it'll be VOIDmode, which isn't useful.   

References GET_MODE, and GET_MODE_UNIT_SIZE.

Referenced by expand_binop().