GCC Middle and Back End API Reference
vector-builder.h
Go to the documentation of this file.
1/* A class for building vector constant patterns.
2 Copyright (C) 2017-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_VECTOR_BUILDER_H
21#define GCC_VECTOR_BUILDER_H
22
23/* This class is a wrapper around auto_vec<T> for building vectors of T.
24 It aims to encode each vector as npatterns interleaved patterns,
25 where each pattern represents a sequence:
26
27 { BASE0, BASE1, BASE1 + STEP, BASE1 + STEP*2, BASE1 + STEP*3, ... }
28
29 The first three elements in each pattern provide enough information
30 to derive the other elements. If all patterns have a STEP of zero,
31 we only need to encode the first two elements in each pattern.
32 If BASE1 is also equal to BASE0 for all patterns, we only need to
33 encode the first element in each pattern. The number of encoded
34 elements per pattern is given by nelts_per_pattern.
35
36 The class can be used in two ways:
37
38 1. It can be used to build a full image of the vector, which is then
39 canonicalized by finalize (). In this case npatterns is initially
40 the number of elements in the vector and nelts_per_pattern is
41 initially 1.
42
43 2. It can be used to build a vector that already has a known encoding.
44 This is preferred since it is more efficient and copes with
45 variable-length vectors. finalize () then canonicalizes the encoding
46 to a simpler form if possible.
47
48 Shape is the type that specifies the number of elements in the vector
49 and (where relevant) the type of each element.
50
51 The derived class Derived provides the functionality of this class
52 for specific Ts. Derived needs to provide the following interface:
53
54 bool equal_p (T elt1, T elt2) const;
55
56 Return true if elements ELT1 and ELT2 are equal.
57
58 bool allow_steps_p () const;
59
60 Return true if a stepped representation is OK. We don't allow
61 linear series for anything other than integers, to avoid problems
62 with rounding.
63
64 bool integral_p (T elt) const;
65
66 Return true if element ELT can be interpreted as an integer.
67
68 StepType step (T elt1, T elt2) const;
69
70 Return the value of element ELT2 minus the value of element ELT1,
71 given integral_p (ELT1) && integral_p (ELT2). There is no fixed
72 choice of StepType.
73
74 T apply_step (T base, unsigned int factor, StepType step) const;
75
76 Return a vector element with the value BASE + FACTOR * STEP.
77
78 bool can_elide_p (T elt) const;
79
80 Return true if we can drop element ELT, even if the retained
81 elements are different. This is provided for TREE_OVERFLOW
82 handling.
83
84 void note_representative (T *elt1_ptr, T elt2);
85
86 Record that ELT2 is being elided, given that ELT1_PTR points to
87 the last encoded element for the containing pattern. This is
88 again provided for TREE_OVERFLOW handling.
89
90 static poly_uint64 shape_nelts (Shape shape);
91
92 Return the number of elements in SHAPE.
93
94 The class provides additional functionality for the case in which
95 T can describe a vector constant as well as an individual element.
96 This functionality requires:
97
98 static poly_uint64 nelts_of (T x);
99
100 Return the number of elements in vector constant X.
101
102 static unsigned int npatterns_of (T x);
103
104 Return the number of patterns used to encode vector constant X.
105
106 static unsigned int nelts_per_pattern_of (T x);
107
108 Return the number of elements used to encode each pattern
109 in vector constant X. */
110
111template<typename T, typename Shape, typename Derived>
112class vector_builder : public auto_vec<T, 32>
113{
114public:
116
118 unsigned int npatterns () const { return m_npatterns; }
119 unsigned int nelts_per_pattern () const { return m_nelts_per_pattern; }
120 unsigned int encoded_nelts () const;
122 T elt (unsigned int) const;
123 unsigned int count_dups (int, int, int) const;
124
125 bool operator == (const Derived &) const;
126 bool operator != (const Derived &x) const { return !operator == (x); }
127
128 bool new_unary_operation (Shape, T, bool);
129 bool new_binary_operation (Shape, T, T, bool);
130
131 void finalize ();
132
133 static unsigned int binary_encoded_nelts (T, T);
134
135protected:
136 void new_vector (poly_uint64, unsigned int, unsigned int);
137 void reshape (unsigned int, unsigned int);
138 bool repeating_sequence_p (unsigned int, unsigned int, unsigned int);
139 bool stepped_sequence_p (unsigned int, unsigned int, unsigned int);
140 bool try_npatterns (unsigned int);
141
142private:
145 Derived *derived () { return static_cast<Derived *> (this); }
146 const Derived *derived () const;
147
149 unsigned int m_npatterns;
151};
152
153template<typename T, typename Shape, typename Derived>
154inline const Derived *
156{
157 return static_cast<const Derived *> (this);
158}
159
160template<typename T, typename Shape, typename Derived>
161inline
163 : m_full_nelts (0),
164 m_npatterns (0),
165 m_nelts_per_pattern (0)
166{}
167
168/* Return the number of elements that are explicitly encoded. The vec
169 starts with these explicitly-encoded elements and may contain additional
170 elided elements. */
171
172template<typename T, typename Shape, typename Derived>
173inline unsigned int
175{
176 return m_npatterns * m_nelts_per_pattern;
177}
178
179/* Return true if every element of the vector is explicitly encoded. */
180
181template<typename T, typename Shape, typename Derived>
182inline bool
184{
185 return known_eq (m_npatterns * m_nelts_per_pattern, m_full_nelts);
186}
187
188/* Start building a vector that has FULL_NELTS elements. Initially
189 encode it using NPATTERNS patterns with NELTS_PER_PATTERN each. */
190
191template<typename T, typename Shape, typename Derived>
192void
194 unsigned int npatterns,
195 unsigned int nelts_per_pattern)
196{
197 m_full_nelts = full_nelts;
198 m_npatterns = npatterns;
199 m_nelts_per_pattern = nelts_per_pattern;
200 this->reserve (encoded_nelts ());
201 this->truncate (0);
202}
203
204/* Return true if this vector and OTHER have the same elements and
205 are encoded in the same way. */
206
207template<typename T, typename Shape, typename Derived>
208bool
210{
211 if (maybe_ne (m_full_nelts, other.m_full_nelts)
212 || m_npatterns != other.m_npatterns
213 || m_nelts_per_pattern != other.m_nelts_per_pattern)
214 return false;
215
216 unsigned int nelts = encoded_nelts ();
217 for (unsigned int i = 0; i < nelts; ++i)
218 if (!derived ()->equal_p ((*this)[i], other[i]))
219 return false;
220
221 return true;
222}
223
224/* Return the value of vector element I, which might or might not be
225 encoded explicitly. */
226
227template<typename T, typename Shape, typename Derived>
228T
230{
231 /* First handle elements that are already present in the underlying
232 vector, regardless of whether they're part of the encoding or not. */
233 if (i < this->length ())
234 return (*this)[i];
235
236 /* Extrapolation is only possible if the encoding has been fully
237 populated. */
238 gcc_checking_assert (encoded_nelts () <= this->length ());
239
240 /* Identify the pattern that contains element I and work out the index of
241 the last encoded element for that pattern. */
242 unsigned int pattern = i % m_npatterns;
243 unsigned int count = i / m_npatterns;
244 unsigned int final_i = encoded_nelts () - m_npatterns + pattern;
245 T final = (*this)[final_i];
246
247 /* If there are no steps, the final encoded value is the right one. */
248 if (m_nelts_per_pattern <= 2)
249 return final;
250
251 /* Otherwise work out the value from the last two encoded elements. */
252 T prev = (*this)[final_i - m_npatterns];
253 return derived ()->apply_step (final, count - 2,
254 derived ()->step (prev, final));
255}
256
257/* Try to start building a new vector of shape SHAPE that holds the result of
258 a unary operation on vector constant VEC. ALLOW_STEPPED_P is true if the
259 operation can handle stepped encodings directly, without having to expand
260 the full sequence.
261
262 Return true if the operation is possible, which it always is when
263 ALLOW_STEPPED_P is true. Leave the builder unchanged otherwise. */
264
265template<typename T, typename Shape, typename Derived>
266bool
268 bool allow_stepped_p)
269{
270 poly_uint64 full_nelts = Derived::shape_nelts (shape);
271 gcc_assert (known_eq (full_nelts, Derived::nelts_of (vec)));
272 unsigned int npatterns = Derived::npatterns_of (vec);
273 unsigned int nelts_per_pattern = Derived::nelts_per_pattern_of (vec);
274 if (!allow_stepped_p && nelts_per_pattern > 2)
275 {
276 if (!full_nelts.is_constant ())
277 return false;
278 npatterns = full_nelts.to_constant ();
279 nelts_per_pattern = 1;
280 }
281 derived ()->new_vector (shape, npatterns, nelts_per_pattern);
282 return true;
283}
284
285/* Try to start building a new vector of shape SHAPE that holds the result of
286 a binary operation on vector constants VEC1 and VEC2. ALLOW_STEPPED_P is
287 true if the operation can handle stepped encodings directly, without
288 having to expand the full sequence.
289
290 Return true if the operation is possible. Leave the builder unchanged
291 otherwise. */
292
293template<typename T, typename Shape, typename Derived>
294bool
296 T vec1, T vec2,
297 bool allow_stepped_p)
298{
299 poly_uint64 full_nelts = Derived::shape_nelts (shape);
300 gcc_assert (known_eq (full_nelts, Derived::nelts_of (vec1))
301 && known_eq (full_nelts, Derived::nelts_of (vec2)));
302 /* Conceptually we split the patterns in VEC1 and VEC2 until we have
303 an equal number for both. Each split pattern requires the same
304 number of elements per pattern as the original. E.g. splitting:
305
306 { 1, 2, 3, ... }
307
308 into two gives:
309
310 { 1, 3, 5, ... }
311 { 2, 4, 6, ... }
312
313 while splitting:
314
315 { 1, 0, ... }
316
317 into two gives:
318
319 { 1, 0, ... }
320 { 0, 0, ... }. */
321 unsigned int npatterns
322 = least_common_multiple (Derived::npatterns_of (vec1),
323 Derived::npatterns_of (vec2));
324 unsigned int nelts_per_pattern
325 = MAX (Derived::nelts_per_pattern_of (vec1),
326 Derived::nelts_per_pattern_of (vec2));
327 if (!allow_stepped_p && nelts_per_pattern > 2)
328 {
329 if (!full_nelts.is_constant ())
330 return false;
331 npatterns = full_nelts.to_constant ();
332 nelts_per_pattern = 1;
333 }
334 derived ()->new_vector (shape, npatterns, nelts_per_pattern);
335 return true;
336}
337
338/* Return the number of elements that the caller needs to operate on in
339 order to handle a binary operation on vector constants VEC1 and VEC2.
340 This static function is used instead of new_binary_operation if the
341 result of the operation is not a constant vector. */
342
343template<typename T, typename Shape, typename Derived>
344unsigned int
346{
347 poly_uint64 nelts = Derived::nelts_of (vec1);
348 gcc_assert (known_eq (nelts, Derived::nelts_of (vec2)));
349 /* See new_binary_operation for details. */
350 unsigned int npatterns
351 = least_common_multiple (Derived::npatterns_of (vec1),
352 Derived::npatterns_of (vec2));
353 unsigned int nelts_per_pattern
354 = MAX (Derived::nelts_per_pattern_of (vec1),
355 Derived::nelts_per_pattern_of (vec2));
356 unsigned HOST_WIDE_INT const_nelts;
357 if (nelts.is_constant (&const_nelts))
358 return MIN (npatterns * nelts_per_pattern, const_nelts);
359 return npatterns * nelts_per_pattern;
360}
361
362/* Return the number of leading duplicate elements in the range
363 [START:END:STEP]. The value is always at least 1. */
364
365template<typename T, typename Shape, typename Derived>
366unsigned int
368 int step) const
369{
370 gcc_assert ((end - start) % step == 0);
371
372 unsigned int ndups = 1;
373 for (int i = start + step;
374 i != end && derived ()->equal_p (elt (i), elt (start));
375 i += step)
376 ndups++;
377 return ndups;
378}
379
380/* Change the encoding to NPATTERNS patterns of NELTS_PER_PATTERN each,
381 but without changing the underlying vector. */
382
383template<typename T, typename Shape, typename Derived>
384void
386 unsigned int nelts_per_pattern)
387{
388 unsigned int old_encoded_nelts = encoded_nelts ();
389 unsigned int new_encoded_nelts = npatterns * nelts_per_pattern;
390 gcc_checking_assert (new_encoded_nelts <= old_encoded_nelts);
391 unsigned int next = new_encoded_nelts - npatterns;
392 for (unsigned int i = new_encoded_nelts; i < old_encoded_nelts; ++i)
393 {
394 derived ()->note_representative (&(*this)[next], (*this)[i]);
395 next += 1;
396 if (next == new_encoded_nelts)
397 next -= npatterns;
398 }
399 m_npatterns = npatterns;
400 m_nelts_per_pattern = nelts_per_pattern;
401}
402
403/* Return true if elements [START, END) contain a repeating sequence of
404 STEP elements. */
405
406template<typename T, typename Shape, typename Derived>
407bool
409 unsigned int end,
410 unsigned int step)
411{
412 for (unsigned int i = start; i < end - step; ++i)
413 if (!derived ()->equal_p ((*this)[i], (*this)[i + step]))
414 return false;
415 return true;
416}
417
418/* Return true if elements [START, END) contain STEP interleaved linear
419 series. */
420
421template<typename T, typename Shape, typename Derived>
422bool
424 unsigned int end,
425 unsigned int step)
426{
427 if (!derived ()->allow_steps_p ())
428 return false;
429
430 for (unsigned int i = start + step * 2; i < end; ++i)
431 {
432 T elt1 = (*this)[i - step * 2];
433 T elt2 = (*this)[i - step];
434 T elt3 = (*this)[i];
435
436 if (!derived ()->integral_p (elt1)
437 || !derived ()->integral_p (elt2)
438 || !derived ()->integral_p (elt3))
439 return false;
440
441 if (maybe_ne (derived ()->step (elt1, elt2),
442 derived ()->step (elt2, elt3)))
443 return false;
444
445 if (!derived ()->can_elide_p (elt3))
446 return false;
447 }
448 return true;
449}
450
451/* Try to change the number of encoded patterns to NPATTERNS, returning
452 true on success. */
453
454template<typename T, typename Shape, typename Derived>
455bool
457{
458 if (m_nelts_per_pattern == 1)
459 {
460 /* See whether NPATTERNS is valid with the current 1-element-per-pattern
461 encoding. */
462 if (repeating_sequence_p (0, encoded_nelts (), npatterns))
463 {
464 reshape (npatterns, 1);
465 return true;
466 }
467
468 /* We can only increase the number of elements per pattern if all
469 elements are still encoded explicitly. */
470 if (!encoded_full_vector_p ())
471 return false;
472 }
473
474 if (m_nelts_per_pattern <= 2)
475 {
476 /* See whether NPATTERNS is valid with a 2-element-per-pattern
477 encoding. */
478 if (repeating_sequence_p (npatterns, encoded_nelts (), npatterns))
479 {
480 reshape (npatterns, 2);
481 return true;
482 }
483
484 /* We can only increase the number of elements per pattern if all
485 elements are still encoded explicitly. */
486 if (!encoded_full_vector_p ())
487 return false;
488 }
489
490 if (m_nelts_per_pattern <= 3)
491 {
492 /* See whether we have NPATTERNS interleaved linear series,
493 giving a 3-element-per-pattern encoding. */
494 if (stepped_sequence_p (npatterns, encoded_nelts (), npatterns))
495 {
496 reshape (npatterns, 3);
497 return true;
498 }
499 return false;
500 }
501
503}
504
505/* Replace the current encoding with the canonical form. */
506
507template<typename T, typename Shape, typename Derived>
508void
510{
511 /* The encoding requires the same number of elements to come from each
512 pattern. */
513 gcc_assert (multiple_p (m_full_nelts, m_npatterns));
514
515 /* Allow the caller to build more elements than necessary. For example,
516 it's often convenient to build a stepped vector from the natural
517 encoding of three elements even if the vector itself only has two. */
518 unsigned HOST_WIDE_INT const_full_nelts;
519 if (m_full_nelts.is_constant (&const_full_nelts)
520 && const_full_nelts <= encoded_nelts ())
521 {
522 m_npatterns = const_full_nelts;
523 m_nelts_per_pattern = 1;
524 }
525
526 /* Try to whittle down the number of elements per pattern. That is:
527
528 1. If we have stepped patterns whose steps are all 0, reduce the
529 number of elements per pattern from 3 to 2.
530
531 2. If we have background fill values that are the same as the
532 foreground values, reduce the number of elements per pattern
533 from 2 to 1. */
534 while (m_nelts_per_pattern > 1
535 && repeating_sequence_p (encoded_nelts () - m_npatterns * 2,
536 encoded_nelts (), m_npatterns))
537 /* The last two sequences of M_NPATTERNS elements are equal,
538 so remove the last one. */
539 reshape (m_npatterns, m_nelts_per_pattern - 1);
540
541 if (pow2p_hwi (m_npatterns))
542 {
543 /* Try to halve the number of patterns while doing so gives a
544 valid pattern. This approach is linear in the number of
545 elements, whereas searcing from 1 up would be O(n*log(n)).
546
547 Each halving step tries to keep the number of elements per pattern
548 the same. If that isn't possible, and if all elements are still
549 explicitly encoded, the halving step can instead increase the number
550 of elements per pattern.
551
552 E.g. for:
553
554 { 0, 2, 3, 4, 5, 6, 7, 8 } npatterns == 8 full_nelts == 8
555
556 we first realize that the second half of the sequence is not
557 equal to the first, so we cannot maintain 1 element per pattern
558 for npatterns == 4. Instead we halve the number of patterns
559 and double the number of elements per pattern, treating this
560 as a "foreground" { 0, 2, 3, 4 } against a "background" of
561 { 5, 6, 7, 8 | 5, 6, 7, 8 ... }:
562
563 { 0, 2, 3, 4 | 5, 6, 7, 8 } npatterns == 4
564
565 Next we realize that this is *not* a foreround of { 0, 2 }
566 against a background of { 3, 4 | 3, 4 ... }, so the only
567 remaining option for reducing the number of patterns is
568 to use a foreground of { 0, 2 } against a stepped background
569 of { 1, 2 | 3, 4 | 5, 6 ... }. This is valid because we still
570 haven't elided any elements:
571
572 { 0, 2 | 3, 4 | 5, 6 } npatterns == 2
573
574 This in turn can be reduced to a foreground of { 0 } against a
575 stepped background of { 1 | 2 | 3 ... }:
576
577 { 0 | 2 | 3 } npatterns == 1
578
579 This last step would not have been possible for:
580
581 { 0, 0 | 3, 4 | 5, 6 } npatterns == 2. */
582 while ((m_npatterns & 1) == 0 && try_npatterns (m_npatterns / 2))
583 continue;
584
585 /* Builders of arbitrary fixed-length vectors can use:
586
587 new_vector (x, x, 1)
588
589 so that every element is specified explicitly. Handle cases
590 that are actually wrapping series, like { 0, 1, 2, 3, 0, 1, 2, 3 }
591 would be for 2-bit elements. We'll have treated them as
592 duplicates in the loop above. */
593 if (m_nelts_per_pattern == 1
594 && m_full_nelts.is_constant (&const_full_nelts)
595 && this->length () >= const_full_nelts
596 && (m_npatterns & 3) == 0
597 && stepped_sequence_p (m_npatterns / 4, const_full_nelts,
598 m_npatterns / 4))
599 {
600 reshape (m_npatterns / 4, 3);
601 while ((m_npatterns & 1) == 0 && try_npatterns (m_npatterns / 2))
602 continue;
603 }
604 }
605 else
606 /* For the non-power-of-2 case, do a simple search up from 1. */
607 for (unsigned int i = 1; i <= m_npatterns / 2; ++i)
608 if (m_npatterns % i == 0 && try_npatterns (i))
609 break;
610}
611
612#endif
Definition vec.h:1656
C to_constant() const
Definition poly-int.h:590
bool is_constant() const
Definition poly-int.h:557
Definition vector-builder.h:113
bool encoded_full_vector_p() const
Definition vector-builder.h:183
void new_vector(poly_uint64, unsigned int, unsigned int)
Definition vector-builder.h:193
vector_builder()
Definition vector-builder.h:162
bool operator!=(const Derived &x) const
Definition vector-builder.h:126
void reshape(unsigned int, unsigned int)
Definition vector-builder.h:385
Derived * derived()
Definition vector-builder.h:145
bool operator==(const Derived &) const
Definition vector-builder.h:209
const Derived * derived() const
Definition vector-builder.h:155
bool new_binary_operation(Shape, T, T, bool)
Definition vector-builder.h:295
vector_builder & operator=(const vector_builder &)
static unsigned int binary_encoded_nelts(T, T)
Definition vector-builder.h:345
bool new_unary_operation(Shape, T, bool)
Definition vector-builder.h:267
bool stepped_sequence_p(unsigned int, unsigned int, unsigned int)
Definition vector-builder.h:423
poly_uint64 full_nelts() const
Definition vector-builder.h:117
void finalize()
Definition vector-builder.h:509
unsigned int nelts_per_pattern() const
Definition vector-builder.h:119
bool try_npatterns(unsigned int)
Definition vector-builder.h:456
vector_builder(const vector_builder &)
unsigned int encoded_nelts() const
Definition vector-builder.h:174
unsigned int m_nelts_per_pattern
Definition vector-builder.h:150
poly_uint64 m_full_nelts
Definition vector-builder.h:148
bool repeating_sequence_p(unsigned int, unsigned int, unsigned int)
Definition vector-builder.h:408
unsigned int count_dups(int, int, int) const
Definition vector-builder.h:367
unsigned int m_npatterns
Definition vector-builder.h:149
unsigned int npatterns() const
Definition vector-builder.h:118
T elt(unsigned int) const
Definition vector-builder.h:229
static unsigned int count[debug_counter_number_of_counters]
Definition dbgcnt.cc:50
HOST_WIDE_INT least_common_multiple(HOST_WIDE_INT a, HOST_WIDE_INT b)
Definition hwint.cc:187
bool pow2p_hwi(unsigned HOST_WIDE_INT x)
Definition hwint.h:179
#define known_eq(A, B)
i
Definition poly-int.h:776
Definition vec.h:450
#define gcc_assert(EXPR)
Definition system.h:814
#define gcc_unreachable()
Definition system.h:841
#define MIN(X, Y)
Definition system.h:396
#define gcc_checking_assert(EXPR)
Definition system.h:821
#define MAX(X, Y)
Definition system.h:397
T * end(vec< T, A, L > *v)
Definition vec.h:457